These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 29167189)
1. Photobiomodulation Inhibits Long-term Structural and Functional Lesions of Diabetic Retinopathy. Cheng Y; Du Y; Liu H; Tang J; Veenstra A; Kern TS Diabetes; 2018 Feb; 67(2):291-298. PubMed ID: 29167189 [TBL] [Abstract][Full Text] [Related]
2. Photobiomodulation Mitigates Diabetes-Induced Retinopathy by Direct and Indirect Mechanisms: Evidence from Intervention Studies in Pigmented Mice. Saliba A; Du Y; Liu H; Patel S; Roberts R; Berkowitz BA; Kern TS PLoS One; 2015; 10(10):e0139003. PubMed ID: 26426815 [TBL] [Abstract][Full Text] [Related]
3. Decreased lysyl oxidase level protects against development of retinal vascular lesions in diabetic retinopathy. Kim D; Mecham RP; Nguyen NH; Roy S Exp Eye Res; 2019 Jul; 184():221-226. PubMed ID: 31022398 [TBL] [Abstract][Full Text] [Related]
4. Plasma Exosomes Contribute to Microvascular Damage in Diabetic Retinopathy by Activating the Classical Complement Pathway. Huang C; Fisher KP; Hammer SS; Navitskaya S; Blanchard GJ; Busik JV Diabetes; 2018 Aug; 67(8):1639-1649. PubMed ID: 29866771 [TBL] [Abstract][Full Text] [Related]
5. Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro. Tang J; Du Y; Lee CA; Talahalli R; Eells JT; Kern TS Invest Ophthalmol Vis Sci; 2013 May; 54(5):3681-90. PubMed ID: 23557732 [TBL] [Abstract][Full Text] [Related]
6. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Kern TS; Miller CM; Du Y; Zheng L; Mohr S; Ball SL; Kim M; Jamison JA; Bingaman DP Diabetes; 2007 Feb; 56(2):373-9. PubMed ID: 17259381 [TBL] [Abstract][Full Text] [Related]
7. Transducin1, Phototransduction and the Development of Early Diabetic Retinopathy. Liu H; Tang J; Du Y; Saadane A; Samuels I; Veenstra A; Kiser JZ; Palczewski K; Kern TS Invest Ophthalmol Vis Sci; 2019 Apr; 60(5):1538-1546. PubMed ID: 30994864 [TBL] [Abstract][Full Text] [Related]
8. Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy. Liu H; Lessieur EM; Saadane A; Lindstrom SI; Taylor PR; Kern TS Diabetologia; 2019 Dec; 62(12):2365-2374. PubMed ID: 31612267 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Adrenergic, Serotonin, and Dopamine Receptors to Inhibit Diabetic Retinopathy: Monotherapies versus Combination Therapies. Kern TS; Du Y; Tang J; Lee CA; Liu H; Dreffs A; Leinonen H; Antonetti DA; Palczewski K Mol Pharmacol; 2021 Nov; 100(5):470-479. PubMed ID: 34393108 [TBL] [Abstract][Full Text] [Related]
10. BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes. Lee VK; Hosking BM; Holeniewska J; Kubala EC; Lundh von Leithner P; Gardner PJ; Foxton RH; Shima DT Diabetologia; 2018 Nov; 61(11):2422-2432. PubMed ID: 30094465 [TBL] [Abstract][Full Text] [Related]
11. Targeting the kallikrein-kinin system as a new therapeutic approach to diabetic retinopathy. Pruneau D; Bélichard P; Sahel JA; Combal JP Curr Opin Investig Drugs; 2010 May; 11(5):507-14. PubMed ID: 20419596 [TBL] [Abstract][Full Text] [Related]
12. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Feit-Leichman RA; Kinouchi R; Takeda M; Fan Z; Mohr S; Kern TS; Chen DF Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4281-7. PubMed ID: 16249509 [TBL] [Abstract][Full Text] [Related]
13. Silencing Nogo-B improves the integrity of blood-retinal barrier in diabetic retinopathy via regulating Src, PI3K/Akt and ERK pathways. Yang Q; Zhang C; Xie H; Tang L; Liu D; Qiu Q; Luo D; Liu K; Xu JY; Tian H; Lu L; Xu GT; Zhang J Biochem Biophys Res Commun; 2021 Dec; 581():96-102. PubMed ID: 34662809 [TBL] [Abstract][Full Text] [Related]
14. Therapeutic Effects of a Novel Agonist of Peroxisome Proliferator-Activated Receptor Alpha for the Treatment of Diabetic Retinopathy. Deng G; Moran EP; Cheng R; Matlock G; Zhou K; Moran D; Chen D; Yu Q; Ma JX Invest Ophthalmol Vis Sci; 2017 Oct; 58(12):5030-5042. PubMed ID: 28979999 [TBL] [Abstract][Full Text] [Related]
15. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy. Gurel Z; Sieg KM; Shallow KD; Sorenson CM; Sheibani N Mol Vis; 2013; 19():1047-59. PubMed ID: 23734074 [TBL] [Abstract][Full Text] [Related]
18. Sirt1: A Guardian of the Development of Diabetic Retinopathy. Mishra M; Duraisamy AJ; Kowluru RA Diabetes; 2018 Apr; 67(4):745-754. PubMed ID: 29311218 [TBL] [Abstract][Full Text] [Related]
19. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908 [TBL] [Abstract][Full Text] [Related]
20. Metanx and early stages of diabetic retinopathy. Liu H; Tang J; Lee CA; Kern TS Invest Ophthalmol Vis Sci; 2015 Jan; 56(1):647-53. PubMed ID: 25574044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]