These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29167400)

  • 21. Structural and Functional Refinement of the Axon Initial Segment in Avian Cochlear Nucleus during Development.
    Akter N; Fukaya R; Adachi R; Kawabe H; Kuba H
    J Neurosci; 2020 Aug; 40(35):6709-6721. PubMed ID: 32719016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spike threshold adaptation diversifies neuronal operating modes in the auditory brain stem.
    Lubejko ST; Fontaine B; Soueidan SE; MacLeod KM
    J Neurophysiol; 2019 Dec; 122(6):2576-2590. PubMed ID: 31577531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds.
    Ashida G; Kretzberg J; Tollin DJ
    PLoS Comput Biol; 2016 Jun; 12(6):e1004997. PubMed ID: 27322612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computation of interaural time difference in the owl's coincidence detector neurons.
    Funabiki K; Ashida G; Konishi M
    J Neurosci; 2011 Oct; 31(43):15245-56. PubMed ID: 22031870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae).
    MacLeod KM; Soares D; Carr CE
    J Comp Neurol; 2006 Mar; 495(2):185-201. PubMed ID: 16435285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling coincidence detection in nucleus laminaris.
    Grau-Serrat V; Carr CE; Simon JZ
    Biol Cybern; 2003 Nov; 89(5):388-96. PubMed ID: 14669019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones.
    Andreasen M; Lambert JD
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):441-62. PubMed ID: 9518704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of dendritic synaptic processing in the lateral superior olive by hyperpolarization-activated currents.
    Leão KE; Leão RN; Walmsley B
    Eur J Neurosci; 2011 Apr; 33(8):1462-70. PubMed ID: 21366727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.
    Hamlet WR; Liu YW; Tang ZQ; Lu Y
    Front Neural Circuits; 2014; 8():51. PubMed ID: 24904297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and dynamics that specialize neurons for high-frequency coincidence detection in the barn owl nucleus laminaris.
    Drucker B; Goldwyn JH
    Biol Cybern; 2023 Apr; 117(1-2):143-162. PubMed ID: 37129628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Action potential initiation and propagation in rat neocortical pyramidal neurons.
    Stuart G; Schiller J; Sakmann B
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):617-32. PubMed ID: 9457640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of phase information at low sound frequency in nucleus magnocellularis of the chicken.
    Fukui I; Sato T; Ohmori H
    J Neurophysiol; 2006 Aug; 96(2):633-41. PubMed ID: 16687616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory Input Shapes Tonotopic Differentiation of Kv1.1 Expression in Avian Cochlear Nucleus during Late Development.
    Akter N; Adachi R; Kato A; Fukaya R; Kuba H
    J Neurosci; 2018 Mar; 38(12):2967-2980. PubMed ID: 29439165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons.
    Connelly WM; Crunelli V; Errington AC
    J Neurosci; 2017 May; 37(21):5319-5333. PubMed ID: 28450536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing.
    Leão RN; Leão RM; da Costa LF; Rock Levinson S; Walmsley B
    Eur J Neurosci; 2008 Jun; 27(12):3095-108. PubMed ID: 18598256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subcellular distribution of low-voltage activated T-type Ca2+ channel subunits (Ca(v)3.1 and Ca(v)3.3) in reticular thalamic neurons of the cat.
    Kovács K; Sík A; Ricketts C; Timofeev I
    J Neurosci Res; 2010 Feb; 88(2):448-60. PubMed ID: 19774668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick.
    Kuba H; Ohmori H
    J Physiol; 2009 Jan; 587(1):87-100. PubMed ID: 19001045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC; Carruth M
    J Neurophysiol; 1999 Oct; 82(4):1895-901. PubMed ID: 10515978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular and molecular mechanisms of avian auditory coincidence detection.
    Kuba H
    Neurosci Res; 2007 Dec; 59(4):370-6. PubMed ID: 17884214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.