These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29167513)

  • 1. Band gap engineering of In(Ga)N/GaN short period superlattices.
    Gorczyca I; Suski T; Strak P; Staszczak G; Christensen NE
    Sci Rep; 2017 Nov; 7(1):16055. PubMed ID: 29167513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of nitride short period superlattices.
    Gorczyca I; Suski T; Christensen NE; Svane A
    J Phys Condens Matter; 2018 Feb; 30(6):063001. PubMed ID: 29256446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum wells formed in transition-metal dichalcogenide nanosheet-superlattices: stability and electronic structures from first principles.
    Su X; Zhang R; Guo C; Guo M; Ren Z
    Phys Chem Chem Phys; 2014 Jan; 16(4):1393-8. PubMed ID: 24296949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization-Induced Phase Transitions in Ultra-Thin InGaN-Based Double Quantum Wells.
    Łepkowski SP; Anwar AR
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers.
    Staszczak G; Gorczyca I; Grzanka E; Smalc-Koziorowska J; Targowski G; Suski T
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Throughput Study of the Electronic Structure and Physical Properties of Short-Period (GaAs)
    Liu QL; Zhao ZY; Yi JH; Zhang ZY
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Band-Gap Studies of Short-Period CdO/MgO Superlattices.
    Przeździecka E; Strąk P; Wierzbicka A; Adhikari A; Lysak A; Sybilski P; Sajkowski JM; Seweryn A; Kozanecki A
    Nanoscale Res Lett; 2021 Apr; 16(1):59. PubMed ID: 33835276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN.
    Moses PG; Miao M; Yan Q; Van de Walle CG
    J Chem Phys; 2011 Feb; 134(8):084703. PubMed ID: 21361552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band Alignments of Ternary Wurtzite and Zincblende III-Nitrides Investigated by Hybrid Density Functional Theory.
    Tsai YC; Bayram C
    ACS Omega; 2020 Mar; 5(8):3917-3923. PubMed ID: 32149218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells.
    Łepkowski SP; Bardyszewski W
    J Phys Condens Matter; 2017 May; 29(19):195702. PubMed ID: 28327465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of the Built-In Electric Field in Recombination Processes of GaN/AlGaN Quantum Wells: Temperature- and Pressure-Dependent Study of Polar and Non-Polar Structures.
    Koronski K; Korona KP; Kryvyi S; Wierzbicka A; Sobczak K; Krukowski S; Strak P; Monroy E; Kaminska A
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage.
    Zhang WC; Wu H; Sun WF; Zhang ZP
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency enhancement mechanism of piezoelectric effect in long wavelength InGaN-based LED.
    Liu L; Feng Q; Zhang Y; Zhu X; Chen L; Xiong Z
    Phys Chem Chem Phys; 2023 Oct; 25(40):27774-27782. PubMed ID: 37814799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-Scale Insights into the Interfacial Polarization Effect in the InGaN/GaN Heterostructure for Solar Cells.
    Hao X; Zhang X; Sun B; Yin D; Dong H; Wang J; Huang B; Xu Y; Shan H; Ma S; Chen C; Xu B
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55762-55769. PubMed ID: 36509550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonons in Short-Period GaN/AlN Superlattices: Group-Theoretical Analysis,
    Davydov V; Roginskii E; Kitaev Y; Smirnov A; Eliseyev I; Nechaev D; Jmerik V; Smirnov M
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33499097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substitutional synthesis of sub-nanometer InGaN/GaN quantum wells with high indium content.
    Vasileiadis IG; Lymperakis L; Adikimenakis A; Gkotinakos A; Devulapalli V; Liebscher CH; Androulidaki M; Hübner R; Karakostas T; Georgakilas A; Komninou P; Dimakis E; Dimitrakopulos GP
    Sci Rep; 2021 Oct; 11(1):20606. PubMed ID: 34663895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices.
    Laref A; Alsagri M; Alahmed ZA; Laref S
    RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique.
    Song H; Kim JS; Kim EK; Seo YG; Hwang SM
    Nanotechnology; 2010 Apr; 21(13):134026. PubMed ID: 20208099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Spin Hall Effect in Two-Monolayer-Thick InN/InGaN Coupled Multiple Quantum Wells.
    Łepkowski SP
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological phase transition and evolution of edge states in In-rich InGaN/GaN quantum wells under hydrostatic pressure.
    Łepkowski SP; Bardyszewski W
    J Phys Condens Matter; 2017 Feb; 29(5):055702. PubMed ID: 27941228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.