These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 29167603)
1. On-demand generation and mixing of liquid-in-gas slugs with digitally-programmable composition and size. Chen YC; Liu K; Shen CK; van Dam RM J Micromech Microeng; 2015 Aug; 25(8):. PubMed ID: 29167603 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition. Liu K; Chen YC; Tseng HR; Shen CK; van Dam RM Microfluid Nanofluidics; 2010 Oct; 9(4-5):933-943. PubMed ID: 20930933 [TBL] [Abstract][Full Text] [Related]
3. Computational investigations of the mixing performance inside liquid slugs generated by a microfluidic T-junction. Li Y; Reddy RK; Kumar CS; Nandakumar K Biomicrofluidics; 2014 Sep; 8(5):054125. PubMed ID: 25538812 [TBL] [Abstract][Full Text] [Related]
4. Quantitative study for control of air-liquid segmented flow in a 3D-printed chip using a vacuum-driven system. Hong H; Song JM; Yeom E Sci Rep; 2022 May; 12(1):8986. PubMed ID: 35643726 [TBL] [Abstract][Full Text] [Related]
5. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions. Cech J; Přibyl M; Snita D Biomicrofluidics; 2013; 7(5):54103. PubMed ID: 24404066 [TBL] [Abstract][Full Text] [Related]
6. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity. Cheah MJ; Kevrekidis IG; Benziger JB Langmuir; 2013 Aug; 29(31):9918-34. PubMed ID: 23876035 [TBL] [Abstract][Full Text] [Related]
7. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows. Yue J; Rebrov EV; Schouten JC Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271 [TBL] [Abstract][Full Text] [Related]
8. An Integrated Droplet Manipulation Platform with Photodeformable Microfluidic Channels. Liu Q; Yu G; Zhu C; Peng B; Li R; Yi T; Yu Y Small Methods; 2021 Dec; 5(12):e2100969. PubMed ID: 34928016 [TBL] [Abstract][Full Text] [Related]
9. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)]. ; ; Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic on-demand droplet merging using surface acoustic waves. Sesen M; Alan T; Neild A Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001 [TBL] [Abstract][Full Text] [Related]
11. Towards an active droplet-based microfluidic platform for programmable fluid handling. Cao X; Buryska T; Yang T; Wang J; Fischer P; Streets A; Stavrakis S; deMello A Lab Chip; 2023 Apr; 23(8):2029-2038. PubMed ID: 37000567 [TBL] [Abstract][Full Text] [Related]
12. Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae. Havurinne V; Tyystjärvi E Elife; 2020 Oct; 9():. PubMed ID: 33077025 [TBL] [Abstract][Full Text] [Related]
13. Generation of Dynamic Concentration Profile Using A Microfluidic Device Integrating Pneumatic Microvalves. Chen C; Li P; Guo T; Chen S; Xu D; Chen H Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291005 [TBL] [Abstract][Full Text] [Related]
14. Water slug to drop and film transitions in gas-flow channels. Cheah MJ; Kevrekidis IG; Benziger JB Langmuir; 2013 Dec; 29(48):15122-36. PubMed ID: 24206393 [TBL] [Abstract][Full Text] [Related]
15. Formation and Stimuli-Directed Migration of Kim J; Olsen T; Zhuang X; Luo J; Yao J; Stojanovic M; Lin Q J Med Biol Eng; 2013; 33(3):263-268. PubMed ID: 33551700 [TBL] [Abstract][Full Text] [Related]
16. Image-Based Feedback of Multi-Component Microdroplets for Ultra-Monodispersed Library Preparation. Cantwell C; McGrath JS; Smith CA; Whyte G Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258146 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Mixing of Microvascular Self-Healing Reagents Using Segmented Gas-Liquid Flow. Dean LM; Krull BP; Li KR; Fedonina YI; White SR; Sottos NR ACS Appl Mater Interfaces; 2018 Sep; 10(38):32659-32667. PubMed ID: 30209942 [TBL] [Abstract][Full Text] [Related]
19. Gas Slug Microfluidics: A Unique Tool for Ultrafast, Highly Controlled Growth of Iron Oxide Nanostructures. Larrea A; Sebastian V; Ibarra A; Arruebo M; Santamaria J Chem Mater; 2015 Jun; 27(12):4254-4260. PubMed ID: 26321791 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Bringer MR; Gerdts CJ; Song H; Tice JD; Ismagilov RF Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):1087-104. PubMed ID: 15306486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]