BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 29167983)

  • 1. Climate change can alter predator-prey dynamics and population viability of prey.
    Bastille-Rousseau G; Schaefer JA; Peers MJL; Ellington EH; Mumma MA; Rayl ND; Mahoney SP; Murray DL
    Oecologia; 2018 Jan; 186(1):141-150. PubMed ID: 29167983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-dependent climate-predator interactions explain three decades of variation in neonatal caribou survival.
    Bastille-Rousseau G; Schaefer JA; Lewis KP; Mumma MA; Ellington EH; Rayl ND; Mahoney SP; Pouliot D; Murray DL
    J Anim Ecol; 2016 Mar; 85(2):445-56. PubMed ID: 26529139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore.
    Rayl ND; Bastille-Rousseau G; Organ JF; Mumma MA; Mahoney SP; Soulliere CE; Lewis KP; Otto RD; Murray DL; Waits LP; Fuller TK
    J Anim Ecol; 2018 May; 87(3):874-887. PubMed ID: 29450888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system.
    DeMars CA; Boutin S
    J Anim Ecol; 2018 Jan; 87(1):274-284. PubMed ID: 28940254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demographic responses of a threatened, low-density ungulate to annual variation in meteorological and phenological conditions.
    DeMars CA; Gilbert S; Serrouya R; Kelly AP; Larter NC; Hervieux D; Boutin S
    PLoS One; 2021; 16(10):e0258136. PubMed ID: 34624030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal effects of Pacific-based climate on recruitment in a predator-limited large herbivore.
    Hegel TM; Mysterud A; Ergon T; Loe LE; Huettmann F; Stenseth NC
    J Anim Ecol; 2010 Mar; 79(2):471-82. PubMed ID: 20002863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal mortality of elk driven by climate, predator phenology and predator community composition.
    Griffin KA; Hebblewhite M; Robinson HS; Zager P; Barber-Meyer SM; Christianson D; Creel S; Harris NC; Hurley MA; Jackson DH; Johnson BK; Myers WL; Raithel JD; Schlegel M; Smith BL; White C; White PJ
    J Anim Ecol; 2011 Nov; 80(6):1246-57. PubMed ID: 21615401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.
    Chan K; Boutin S; Hossie TJ; Krebs CJ; O'Donoghue M; Murray DL
    Ecology; 2017 Jul; 98(7):1787-1796. PubMed ID: 28369822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of predation in the decline and extirpation of woodland caribou.
    Wittmer HU; Sinclair AR; McLellan BN
    Oecologia; 2005 Jun; 144(2):257-67. PubMed ID: 15891849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in landscape composition influence the decline of a threatened woodland caribou population.
    Wittmer HU; McLellan BN; Serrouya R; Apps CD
    J Anim Ecol; 2007 May; 76(3):568-79. PubMed ID: 17439473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change impacts on the conservation outlook of populations on the poleward periphery of species ranges: A case study of Canadian black-tailed prairie dogs (Cynomys ludovicianus).
    Stephens T; Wilson SC; Cassidy F; Bender D; Gummer D; Smith DHV; Lloyd N; McPherson JM; Moehrenschlager A
    Glob Chang Biol; 2018 Feb; 24(2):836-847. PubMed ID: 28976626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-trophic resource selection function enlightens the behavioural game between wolves and their prey.
    Courbin N; Fortin D; Dussault C; Fargeot V; Courtois R
    J Anim Ecol; 2013 Sep; 82(5):1062-71. PubMed ID: 23701257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal dynamics in the response of woodland caribou and moose to the passage of grey wolf.
    Latombe G; Fortin D; Parrott L
    J Anim Ecol; 2014 Jan; 83(1):185-98. PubMed ID: 23859231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of considering multiple interacting species for conservation of species at risk.
    Burgar JM; Burton AC; Fisher JT
    Conserv Biol; 2019 Jun; 33(3):709-715. PubMed ID: 30306635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonally Varying Predation Behavior and Climate Shifts Are Predicted to Affect Predator-Prey Cycles.
    Tyson R; Lutscher F
    Am Nat; 2016 Nov; 188(5):539-553. PubMed ID: 27788349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climatic amplification of the numerical response of a predator population to its prey.
    Bowler B; Krebs C; O'Donoghue M; Hone J
    Ecology; 2014 May; 95(5):1153-61. PubMed ID: 25000747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trophic niche partitioning between two prey and their incidental predators revealed various threats for an endangered species.
    Rioux È; Pelletier F; St-Laurent MH
    Ecol Evol; 2022 Mar; 12(3):e8742. PubMed ID: 35342591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears.
    Finnegan L; Pigeon KE; Cranston J; Hebblewhite M; Musiani M; Neufeld L; Schmiegelow F; Duval J; Stenhouse GB
    PLoS One; 2018; 13(4):e0195480. PubMed ID: 29659615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using predator-prey theory to predict outcomes of broadscale experiments to reduce apparent competition.
    Serrouya R; Wittmann MJ; McLellan BN; Wittmer HU; Boutin S
    Am Nat; 2015 May; 185(5):665-79. PubMed ID: 25905509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral "bycatch" from camera trap surveys yields insights on prey responses to human-mediated predation risk.
    Burton AC; Beirne C; Sun C; Granados A; Procko M; Chen C; Fennell M; Constantinou A; Colton C; Tjaden-McClement K; Fisher JT; Burgar J
    Ecol Evol; 2022 Jul; 12(7):e9108. PubMed ID: 35866017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.