BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 29168484)

  • 1. Global profiling of lysine reactivity and ligandability in the human proteome.
    Hacker SM; Backus KM; Lazear MR; Forli S; Correia BE; Cravatt BF
    Nat Chem; 2017 Dec; 9(12):1181-1190. PubMed ID: 29168484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proteome-wide atlas of lysine-reactive chemistry.
    Abbasov ME; Kavanagh ME; Ichu TA; Lazear MR; Tao Y; Crowley VM; Am Ende CW; Hacker SM; Ho J; Dix MM; Suciu R; Hayward MM; Kiessling LL; Cravatt BF
    Nat Chem; 2021 Nov; 13(11):1081-1092. PubMed ID: 34504315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the proteome reactivity and selectivity of aryl halides.
    Shannon DA; Banerjee R; Webster ER; Bak DW; Wang C; Weerapana E
    J Am Chem Soc; 2014 Mar; 136(9):3330-3. PubMed ID: 24548313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
    Chen Y; Craven GB; Kamber RA; Cuesta A; Zhersh S; Moroz YS; Bassik MC; Taunton J
    Nat Chem; 2023 Nov; 15(11):1616-1625. PubMed ID: 37460812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids.
    Bracken AK; Gekko CE; Suss NO; Lueders EE; Cui Q; Fu Q; Lui ACW; Anderson ET; Zhang S; Abbasov ME
    J Am Chem Soc; 2024 Jan; 146(4):2524-2548. PubMed ID: 38230968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
    Litwin K; Crowley VM; Suciu RM; Boger DL; Cravatt BF
    Tetrahedron Lett; 2021 Mar; 67():. PubMed ID: 33776155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.
    Bremang M; Cuomo A; Agresta AM; Stugiewicz M; Spadotto V; Bonaldi T
    Mol Biosyst; 2013 Sep; 9(9):2231-47. PubMed ID: 23748837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent protein modification: the current landscape of residue-specific electrophiles.
    Shannon DA; Weerapana E
    Curr Opin Chem Biol; 2015 Feb; 24():18-26. PubMed ID: 25461720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chemical proteomics approach for global mapping of functional lysines on cell surface of living cell.
    Wang T; Ma S; Ji G; Wang G; Liu Y; Zhang L; Zhang Y; Lu H
    Nat Commun; 2024 Apr; 15(1):2997. PubMed ID: 38589397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reimagining Druggability Using Chemoproteomic Platforms.
    Spradlin JN; Zhang E; Nomura DK
    Acc Chem Res; 2021 Apr; 54(7):1801-1813. PubMed ID: 33733731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition.
    Jiang J; Gai Z; Wang Y; Fan K; Sun L; Wang H; Ding Z
    BMC Genomics; 2018 Nov; 19(1):840. PubMed ID: 30477445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells.
    Vinogradova EV; Cravatt BF
    STAR Protoc; 2021 Jun; 2(2):100458. PubMed ID: 33899026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Proteome-Wide Potential for Reversible Covalency at Cysteine.
    Senkane K; Vinogradova EV; Suciu RM; Crowley VM; Zaro BW; Bradshaw JM; Brameld KA; Cravatt BF
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11385-11389. PubMed ID: 31222866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global profiling of phosphorylation-dependent changes in cysteine reactivity.
    Kemper EK; Zhang Y; Dix MM; Cravatt BF
    Nat Methods; 2022 Mar; 19(3):341-352. PubMed ID: 35228727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomics analysis reveals alterations of lysine acetylation in mouse testis in response to heat shock and X-ray exposure.
    Xie C; Shen H; Zhang H; Yan J; Liu Y; Yao F; Wang X; Cheng Z; Tang TS; Guo C
    Biochim Biophys Acta Proteins Proteom; 2018 Mar; 1866(3):464-472. PubMed ID: 29196234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disparate proteome reactivity profiles of carbon electrophiles.
    Weerapana E; Simon GM; Cravatt BF
    Nat Chem Biol; 2008 Jul; 4(7):405-7. PubMed ID: 18488014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.