BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 29168484)

  • 21. Site-specific reactivity of nonenzymatic lysine acetylation.
    Baeza J; Smallegan MJ; Denu JM
    ACS Chem Biol; 2015 Jan; 10(1):122-8. PubMed ID: 25555129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleophilic covalent ligand discovery for the cysteine redoxome.
    Fu L; Jung Y; Tian C; Ferreira RB; Cheng R; He F; Yang J; Carroll KS
    Nat Chem Biol; 2023 Nov; 19(11):1309-1319. PubMed ID: 37248412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation.
    LoPachin RM; Gavin T
    Free Radic Res; 2016; 50(2):195-205. PubMed ID: 26559119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalized Scout Fragments for Site-Specific Covalent Ligand Discovery and Optimization.
    Crowley VM; Thielert M; Cravatt BF
    ACS Cent Sci; 2021 Apr; 7(4):613-623. PubMed ID: 34056091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa.
    Xue C; Liu S; Chen C; Zhu J; Yang X; Zhou Y; Guo R; Liu X; Gong Z
    Proteomics; 2018 Jan; 18(1):. PubMed ID: 29106068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entropic stabilization of proteins and its proteomic consequences.
    Berezovsky IN; Chen WW; Choi PJ; Shakhnovich EI
    PLoS Comput Biol; 2005 Sep; 1(4):e47. PubMed ID: 16201009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arylfluorosulfate-Based Electrophiles for Covalent Protein Labeling: A New Addition to the Arsenal.
    Martín-Gago P; Olsen CA
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):957-966. PubMed ID: 30024079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
    Oshikawa K; Matsumoto M; Oyamada K; Nakayama KI
    J Proteome Res; 2012 Feb; 11(2):796-807. PubMed ID: 22053931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ACR-Based Probe for the Quantitative Profiling of Histidine Reactivity in the Human Proteome.
    Li J; Zhou J; Xu H; Tian K; Zhu H; Chen Y; Huang Y; Wang G; Gong Z; Qin H; Ye M
    J Am Chem Soc; 2023 Mar; 145(9):5252-5260. PubMed ID: 36848482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative reactivity profiling predicts functional cysteines in proteomes.
    Weerapana E; Wang C; Simon GM; Richter F; Khare S; Dillon MB; Bachovchin DA; Mowen K; Baker D; Cravatt BF
    Nature; 2010 Dec; 468(7325):790-5. PubMed ID: 21085121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Affinity Purification of Methyllysine Proteome by Site-Specific Covalent Conjugation.
    Wang R; Huang M; Li L; Kaneko T; Voss C; Zhang L; Xia J; Li SSC
    Anal Chem; 2018 Dec; 90(23):13876-13881. PubMed ID: 30395435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liganding Functional Tyrosine Sites on Proteins Using Sulfur-Triazole Exchange Chemistry.
    Brulet JW; Borne AL; Yuan K; Libby AH; Hsu KL
    J Am Chem Soc; 2020 May; 142(18):8270-8280. PubMed ID: 32329615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interrogation of Functional Mitochondrial Cysteine Residues by Quantitative Mass Spectrometry.
    Bak DW; Weerapana E
    Methods Mol Biol; 2019; 1967():211-227. PubMed ID: 31069773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.
    Nie Z; Zhu H; Zhou Y; Wu C; Liu Y; Sheng Q; Lv Z; Zhang W; Yu W; Jiang C; Xie L; Zhang Y; Yao J
    Proteomics; 2015 Sep; 15(18):3253-66. PubMed ID: 26046922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
    Vinogradova EV; Zhang X; Remillard D; Lazar DC; Suciu RM; Wang Y; Bianco G; Yamashita Y; Crowley VM; Schafroth MA; Yokoyama M; Konrad DB; Lum KM; Simon GM; Kemper EK; Lazear MR; Yin S; Blewett MM; Dix MM; Nguyen N; Shokhirev MN; Chin EN; Lairson LL; Melillo B; Schreiber SL; Forli S; Teijaro JR; Cravatt BF
    Cell; 2020 Aug; 182(4):1009-1026.e29. PubMed ID: 32730809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially.
    Mujahid H; Meng X; Xing S; Peng X; Wang C; Peng Z
    J Proteomics; 2018 Jan; 170():88-98. PubMed ID: 28882676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable Amine-Reactive Electrophiles for Selective Profiling of Lysine.
    Tang KC; Cao J; Boatner LM; Li L; Farhi J; Houk KN; Spangle J; Backus KM; Raj M
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202112107. PubMed ID: 34762358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.