BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29168632)

  • 1. Electrostatic Catalysis Induced by Luciferases in the Decomposition of the Firefly Dioxetanone and Its Analogue.
    Zhou JG; Yang S; Deng ZY
    J Phys Chem B; 2017 Dec; 121(49):11053-11061. PubMed ID: 29168632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient firefly chemi/bioluminescence: evidence for chemiexcitation resulting from the decomposition of a neutral firefly dioxetanone molecule.
    Pinto da Silva L; Santos AJ; Esteves da Silva JC
    J Phys Chem A; 2013 Jan; 117(1):94-100. PubMed ID: 23244350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insight into the chemiluminescent decomposition of firefly dioxetanone.
    Yue L; Liu YJ; Fang WH
    J Am Chem Soc; 2012 Jul; 134(28):11632-9. PubMed ID: 22720977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A QM/MM Study on the Initiation Reaction of Firefly Bioluminescence-Enzymatic Oxidation of Luciferin.
    Yu M; Liu Y
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An allylated firefly luciferin analogue with luciferase specific response in living cells.
    Ikeda Y; Saitoh T; Niwa K; Nakajima T; Kitada N; Maki SA; Sato M; Citterio D; Nishiyama S; Suzuki K
    Chem Commun (Camb); 2018 Feb; 54(14):1774-1777. PubMed ID: 29383338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong electron correlation in the decomposition reaction of dioxetanone with implications for firefly bioluminescence.
    Greenman L; Mazziotti DA
    J Chem Phys; 2010 Oct; 133(16):164110. PubMed ID: 21033778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a functional luciferase gene in the non-luminous diurnal firefly, Lucidina biplagiata.
    Oba Y; Furuhashi M; Inouye S
    Insect Mol Biol; 2010 Dec; 19(6):737-43. PubMed ID: 20609019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interconversion of ketoprofen recognition in firefly luciferase-catalyzed enantioselective thioesterification reaction using from Pylocoeria miyako (PmL) and Hotaria parvura (HpL) just by mutating two amino acid residues.
    Kato D; Hiraishi Y; Maenaka M; Yokoyama K; Niwa K; Ohmiya Y; Takeo M; Negoro S
    J Biotechnol; 2013 Nov; 168(3):277-83. PubMed ID: 23685028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brominated Luciferins Are Versatile Bioluminescent Probes.
    Steinhardt RC; Rathbun CM; Krull BT; Yu JM; Yang Y; Nguyen BD; Kwon J; McCutcheon DC; Jones KA; Furche F; Prescher JA
    Chembiochem; 2017 Jan; 18(1):96-100. PubMed ID: 27930848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain.
    Branchini BR; Southworth TL; Murtiashaw MH; Wilkinson SR; Khattak NF; Rosenberg JC; Zimmer M
    Biochemistry; 2005 Feb; 44(5):1385-93. PubMed ID: 15683224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the spectral difference in luciferase bioluminescence.
    Nakatsu T; Ichiyama S; Hiratake J; Saldanha A; Kobashi N; Sakata K; Kato H
    Nature; 2006 Mar; 440(7082):372-6. PubMed ID: 16541080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis-Inspired Deracemizative Production of D-Luciferin In Vitro by Combining Luciferase and Thioesterase.
    Niwa K; Kato DI
    Methods Mol Biol; 2022; 2524():53-58. PubMed ID: 35821462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator.
    Ebrahimi M; Hosseinkhani S; Heydari A; Khavari-Nejad RA; Akbari J
    Appl Biochem Biotechnol; 2012 Oct; 168(3):604-15. PubMed ID: 22810202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical insights into the effect of pH values on oxidation processes in the emission of firefly luciferin in aqueous solution.
    Hiyama M; Akiyama H; Koga N
    Luminescence; 2017 Sep; 32(6):1100-1108. PubMed ID: 28429409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full color modulation of firefly luciferase through engineering with unified Stark effect.
    Cai D; Marques MA; Nogueira F
    J Phys Chem B; 2013 Nov; 117(44):13725-30. PubMed ID: 24087879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between stability and bioluminescence color of firefly luciferase.
    Maghami P; Ranjbar B; Hosseinkhani S; Ghasemi A; Moradi A; Gill P
    Photochem Photobiol Sci; 2010 Mar; 9(3):376-83. PubMed ID: 20221465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expedient synthesis of electronically modified luciferins for bioluminescence imaging.
    McCutcheon DC; Paley MA; Steinhardt RC; Prescher JA
    J Am Chem Soc; 2012 May; 134(18):7604-7. PubMed ID: 22519459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luciferase Activity of Insect Fatty Acyl-CoA Synthetases with Synthetic Luciferins.
    Mofford DM; Liebmann KL; Sankaran GS; Reddy GSKK; Reddy GR; Miller SC
    ACS Chem Biol; 2017 Dec; 12(12):2946-2951. PubMed ID: 29073357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tibetan Firefly Luciferase with Low Temperature Adaptation.
    Mitani Y; Futahashi R; Liu Z; Liang X; Ohmiya Y
    Photochem Photobiol; 2017 Mar; 93(2):466-472. PubMed ID: 27716939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.
    Viviani VR; Simões A; Bevilaqua VR; Gabriel GV; Arnoldi FG; Hirano T
    Biochemistry; 2016 Aug; 55(34):4764-76. PubMed ID: 27391007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.