These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29168724)

  • 21. Chloride removal from flue gas desulfurization wastewater through Friedel's salt precipitation method: A review.
    Liu X; Zhang H; Zhang X; Yang Y; Yang C; Zhao P; Dong Y
    Sci Total Environ; 2023 Mar; 862():160906. PubMed ID: 36521621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite.
    Chang H; Liu T; He Q; Li D; Crittenden J; Liu B
    Water Sci Technol; 2017 Jul; 76(3-4):575-583. PubMed ID: 28759440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zinc and cadmium adsorption from wastewater using hydroxyapatite synthesized from flue gas desulfurization waste.
    Kızıltas Demir S; Tugrul N
    Water Sci Technol; 2021 Sep; 84(5):1280-1292. PubMed ID: 34534123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pilot-scale demonstration of the hybrid zero-valent iron process for treating flue-gas-desulfurization wastewater: part II.
    Huang YH; Peddi PK; Zeng H; Tang CL; Teng X
    Water Sci Technol; 2013; 67(2):239-46. PubMed ID: 23168619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovering chemical sludge from the zero liquid discharge system of flue gas desulfurization wastewater as flame retardants by a stepwise precipitation process.
    Guo J; Zhou Z; Ming Q; Sun D; Li F; Xi J; Wu Q; Yang J; Xia Q; Zhao X
    J Hazard Mater; 2021 Sep; 417():126054. PubMed ID: 33992018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorus removal from aqueous solution using a novel granular material developed from building waste.
    Yang S; Jin P; Wang XC; Zhang Q; Chen X
    Water Sci Technol; 2017 Mar; 75(5-6):1500-1511. PubMed ID: 28333066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wastewater treatment valorisation by simultaneously removing and recovering phosphate and ammonia from municipal effluents using a mechano-thermo activated magnesite technology.
    Mavhungu A; Mbaya R; Masindi V; Foteinis S; Muedi KL; Kortidis I; Chatzisymeon E
    J Environ Manage; 2019 Nov; 250():109493. PubMed ID: 31521924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovery of EDTA from soil-washing wastewater with calcium-hydroxide-enhanced sulfide precipitation.
    Wang Q; Chen J
    Chemosphere; 2019 Dec; 237():124286. PubMed ID: 31349960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater.
    Zhang T; Ding L; Ren H; Guo Z; Tan J
    J Hazard Mater; 2010 Apr; 176(1-3):444-50. PubMed ID: 20004518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced phosphorus removal using acid-treated magnesium slag particles.
    Tang X; Li R; Wu M; Dong L; Wang Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3860-3871. PubMed ID: 29178003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling.
    Huang H; Xiao D; Liu J; Hou L; Ding L
    Sci Rep; 2015 May; 5():10183. PubMed ID: 25960246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous removal of nitrogen and phosphorus by magnesium-modified calcium silicate core-shell material in water.
    Si Q; Zhu Q; Xing Z
    Ecotoxicol Environ Saf; 2018 Nov; 163():656-664. PubMed ID: 30098555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Process optimization to enhance utilization efficiency of precipitants for chloride removal from flue gas desulfurization wastewater via Friedel's salt precipitation.
    Ye X; Zhao X; Ming Q; Zhu J; Guo J; Sun D; Zhang S; Xu J; Zhou Z
    J Environ Manage; 2021 Dec; 299():113682. PubMed ID: 34526277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wet flue gas desulfurization wastewater treatment with reclaimed water treatment plant sludge: a case study.
    Chen H; Wang Y; Wei Y; Peng L; Jiang B; Li G; Yu G; Du C
    Water Sci Technol; 2018 Dec; 78(11):2392-2403. PubMed ID: 30699091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms controlling the leaching kinetics of fixated flue gas desulfurization (FGD) material under neutral and acidic conditions.
    Cheng CM; Walker HW; Bigham JM
    J Environ Qual; 2007; 36(3):874-86. PubMed ID: 17485719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium-modified granular attapulgite removed phosphorus from synthetic wastewater containing low-strength phosphorus.
    Lv N; Li X; Qi X; Ren Y
    Chemosphere; 2022 Jun; 296():133898. PubMed ID: 35134405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.
    Chen L; Stehouwer R; Tong X; Kost D; Bigham JM; Dick WA
    Chemosphere; 2015 Sep; 134():459-65. PubMed ID: 26001939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biologically mediated phosphorus precipitation in wastewater treatment with microalgae.
    Larsdotter K; La Cour Jansen J; Dalhammar G
    Environ Technol; 2007 Sep; 28(9):953-60. PubMed ID: 17910248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of calcium, phosphorus and natural organic matter in electrochemical recovery of phosphate.
    Lei Y; Song B; Saakes M; van der Weijden RD; Buisman CJN
    Water Res; 2018 Oct; 142():10-17. PubMed ID: 29807252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.