These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 29168783)

  • 1. Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
    Christiansen MP; Laursen MS; Jørgensen RN; Skovsen S; Gislum R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A LiDAR and IMU Integrated Indoor Navigation System for UAVs and Its Application in Real-Time Pipeline Classification.
    Kumar GA; Patil AK; Patil R; Park SS; Chai YH
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28574474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pole-Like Object Extraction and Pole-Aided GNSS/IMU/LiDAR-SLAM System in Urban Area.
    Liu T; Chang L; Niu X; Liu J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.
    Wang D; Xin X; Shao Q; Brolly M; Zhu Z; Chen J
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion.
    Du H; Wang W; Xu C; Xiao R; Sun C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2019; 15():17. PubMed ID: 30828356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models.
    Aboutalebi M; Torres-Rua AF; McKee M; Kustas WP; Nieto H; Alsina MM; White A; Prueger JH; McKee L; Alfieri J; Hipps L; Coopmans C; Dokoozlian N
    Remote Sens (Basel); 2020; 12(1):50. PubMed ID: 32355570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation.
    Ilci V; Toth C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status.
    Yao L; Wang Q; Yang J; Zhang Y; Zhu Y; Cao W; Ni J
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquisition of high-resolution topographic information in forest environments using integrated UAV-LiDAR system: System development and field demonstration.
    Choi SK; Ramirez RA; Kwon TH
    Heliyon; 2023 Sep; 9(9):e20225. PubMed ID: 37810106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography.
    Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y
    Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
    Brede B; Lau A; Bartholomeus HM; Kooistra L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration.
    Chang L; Niu X; Liu T
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigorous Calibration of UAV-Based LiDAR Systems with Refinement of the Boresight Angles Using a Point-to-Plane Approach.
    de Oliveira Junior EM; Dos Santos DR
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GNSS/INS/LiDAR Integration Scheme for UAV-Based Navigation in GNSS-Challenging Environments.
    Elamin A; Abdelaziz N; El-Rabbany A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obtaining World Coordinate Information of UAV in GNSS Denied Environments.
    Chen C; Tian Y; Lin L; Chen S; Li H; Wang Y; Su K
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation.
    Buunk T; Vélez S; Ariza-Sentís M; Valente J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GNSS/LiDAR-Based Navigation of an Aerial Robot in Sparse Forests.
    Chiella ACB; Machado HN; Teixeira BOS; Pereira GAS
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating Practical Impacts of Using Single-Antenna and Dual-Antenna GNSS/INS Sensors in UAS-Lidar Applications.
    Brazeal RG; Wilkinson BE; Benjamin AR
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.