BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29169719)

  • 1. Fracture Gap Reduction With Variable-Pitch Headless Screws.
    Roebke AJ; Roebke LJ; Goyal KS
    J Hand Surg Am; 2018 Apr; 43(4):385.e1-385.e8. PubMed ID: 29169719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Derotational Kirschner Wires on Fracture Gap Reduction With Variable-Pitch Headless Screws.
    Lynch D; Mickley JP; Gordon A; Roebke AJ; Goyal KS
    J Hand Surg Am; 2023 Jan; 48(1):86.e1-86.e7. PubMed ID: 34802813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture Gap Closure and Reduction Are Affected by the Orientation of the Headless Compression Screw.
    Mickley JP; Lynch DJ; Gordon AM; Roebke AJ; Goyal KS
    Hand (N Y); 2024 Jun; 19(4):656-663. PubMed ID: 36692082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of interfragmentary gap on compression force in a headless compression screw used for scaphoid fixation.
    Tan ES; Mat Jais IS; Abdul Rahim S; Tay SC
    J Hand Surg Eur Vol; 2018 Jan; 43(1):93-96. PubMed ID: 28382830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partially threaded headless screw may benefit adequate interfragmentary compression and reduced driving torque for small bone fixation.
    Lin CC; Lin KP; Huang CC; Chen WC; Wei HW; Tsai CL; Lin KJ
    J Orthop Surg (Hong Kong); 2018; 26(1):2309499018760130. PubMed ID: 29486668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Comparison of Headless Screw Fixation and Locking Plate Fixation for Talar Neck Fractures.
    Karakasli A; Hapa O; Erduran M; Dincer C; Cecen B; Havitcioglu H
    J Foot Ankle Surg; 2015; 54(5):905-9. PubMed ID: 25998471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixation strength of anteriorly inserted headless screws for talar neck fractures.
    Capelle JH; Couch CG; Wells KM; Morris RP; Buford WL; Merriman DJ; Panchbhavi VK
    Foot Ankle Int; 2013 Jul; 34(7):1012-6. PubMed ID: 23456083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A central threadless shaft screw is better than a fully threaded variable pitch screw for unstable scaphoid nonunion: a biomechanical study.
    Koh IH; Kang HJ; Kim JS; Park SJ; Choi YR
    Injury; 2015 Apr; 46(4):638-42. PubMed ID: 25666203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical comparison of equine third metacarpal condylar bone fragment compression and screw pushout strength between headless tapered variable pitch and AO cortical bone screws.
    Galuppo LD; Stover SM; Jensen DG
    Vet Surg; 2002; 31(3):201-10. PubMed ID: 11994847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jones fracture fixation: a biomechanical comparison of partially threaded screws versus tapered variable pitch screws.
    Orr JD; Glisson RR; Nunley JA
    Am J Sports Med; 2012 Mar; 40(3):691-8. PubMed ID: 22227846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of two headless compression screws for operative treatment of scaphoid fractures.
    Grewal R; Assini J; Sauder D; Ferreira L; Johnson J; Faber K
    J Orthop Surg Res; 2011 Jun; 6():27. PubMed ID: 21645410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mechanical Comparison of the Compressive Force Generated by Various Headless Compression Screws and the Impact of Fracture Gap Size.
    Ilyas AM; Mahoney JM; Bucklen BS
    Hand (N Y); 2021 Sep; 16(5):604-611. PubMed ID: 31565968
    [No Abstract]   [Full Text] [Related]  

  • 13. Fixation strength of four headless compression screws.
    Hart A; Harvey EJ; Rabiei R; Barthelat F; Martineau PA
    Med Eng Phys; 2016 Oct; 38(10):1037-43. PubMed ID: 27595474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical comparison of a fully threaded, variable pitch screw and a partially threaded lag screw for internal fixation of Type II dens fractures.
    Magee W; Hettwer W; Badra M; Bay B; Hart R
    Spine (Phila Pa 1976); 2007 Aug; 32(17):E475-9. PubMed ID: 17762280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion profiles of 4 headless compression screws.
    Hart A; Harvey EJ; Lefebvre LP; Barthelat F; Rabiei R; Martineau PA
    J Hand Surg Am; 2013 Sep; 38(9):1728-34. PubMed ID: 23809468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Removal and Reinsertion of Headless Compression Screws.
    Donald SM; Niu R; Jones CW; Smith BJ; Clarke EC; Lawson RD
    J Hand Surg Am; 2018 Feb; 43(2):139-145. PubMed ID: 29137829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larger screw diameter may not guarantee greater pullout strength for headless screws - a biomechanical study.
    Lin CC; Lin KJ; Chen WC; Wei HW; Lin KP; Tsai CL
    Biomed Tech (Berl); 2017 May; 62(3):257-261. PubMed ID: 27341556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical analysis of second-generation headless compression screws.
    Assari S; Darvish K; Ilyas AM
    Injury; 2012 Jul; 43(7):1159-65. PubMed ID: 22482931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical comparison of headless tapered variable pitch and AO cortical bone screws for fixation of a simulated lateral condylar fracture in equine third metacarpal bones.
    Galuppo LD; Stover SM; Jensen DG; Willits NH
    Vet Surg; 2001; 30(4):332-40. PubMed ID: 11443594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical Comparison of Tension Band Fixation of Patella Transverse Fracture: Headless Screws Versus Headed Screws.
    Martin JM; Applin DT; McGrady LM; Wang M; Schmeling GJ
    J Orthop Trauma; 2019 Jun; 33(6):e240-e245. PubMed ID: 30720558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.