BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29169944)

  • 1. A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery.
    Orasugh JT; Saha NR; Sarkar G; Rana D; Mondal D; Ghosh SK; Chattopadhyay D
    Int J Biol Macromol; 2018 Apr; 109():1246-1252. PubMed ID: 29169944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of cotton fiber-based nanocellulose.
    Theivasanthi T; Anne Christma FL; Toyin AJ; Gopinath SCB; Ravichandran R
    Int J Biol Macromol; 2018 Apr; 109():832-836. PubMed ID: 29133091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of nano-cellulose with new shape from different precursor.
    Maiti S; Jayaramudu J; Das K; Reddy SM; Sadiku R; Ray SS; Liu D
    Carbohydr Polym; 2013 Oct; 98(1):562-7. PubMed ID: 23987382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction and characterization of nanocellulose structures from raw cotton linter.
    Morais JP; Rosa Mde F; de Souza Filho Mde S; Nascimento LD; do Nascimento DM; Cassales AR
    Carbohydr Polym; 2013 Jan; 91(1):229-35. PubMed ID: 23044127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.
    Shankar S; Rhim JW
    Carbohydr Polym; 2016 Jan; 135():18-26. PubMed ID: 26453846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW; Lee HV
    Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization.
    Li J; Wei X; Wang Q; Chen J; Chang G; Kong L; Su J; Liu Y
    Carbohydr Polym; 2012 Nov; 90(4):1609-13. PubMed ID: 22944423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.
    Liu Y; Thibodeaux D; Gamble G; Bauer P; VanDerveer D
    Appl Spectrosc; 2012 Aug; 66(8):983-6. PubMed ID: 22800914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system.
    Chen YW; Hasanulbasori MA; Chiat PF; Lee HV
    Int J Biol Macromol; 2019 Feb; 123():1305-1319. PubMed ID: 30292586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-FTIR combined with curve fitting method to study cellulose crystallinity of developing cotton fibers.
    Zhang L; Li X; Zhang S; Gao Q; Lu Q; Peng R; Xu P; Shang H; Yuan Y; Zou H
    Anal Bioanal Chem; 2021 Feb; 413(5):1313-1320. PubMed ID: 33404744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.
    Chen YW; Lee HV; Juan JC; Phang SM
    Carbohydr Polym; 2016 Oct; 151():1210-1219. PubMed ID: 27474672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of cellulose nanospheres via combining ZnCl
    Liu Q; Chen N; Yin X; Long L; Hou X; Zhao J; Yuan X
    Int J Biol Macromol; 2021 Jun; 181():621-630. PubMed ID: 33798585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative process for obtaining modified nanocellulose from soybean straw.
    Souza AG; Santos DF; Ferreira RR; Pinto VZ; Rosa DS
    Int J Biol Macromol; 2020 Dec; 165(Pt B):1803-1812. PubMed ID: 33075342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.
    Thomas MG; Abraham E; Jyotishkumar P; Maria HJ; Pothen LA; Thomas S
    Int J Biol Macromol; 2015 Nov; 81():768-77. PubMed ID: 26318667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton.
    Abu-Danso E; Srivastava V; Sillanpää M; Bhatnagar A
    Int J Biol Macromol; 2017 Sep; 102():248-257. PubMed ID: 28366848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes.
    Kljun A; Benians TA; Goubet F; Meulewaeter F; Knox JP; Blackburn RS
    Biomacromolecules; 2011 Nov; 12(11):4121-6. PubMed ID: 21981266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of micro- and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel.
    Ahmadi M; Madadlou A; Sabouri AA
    Food Chem; 2015 May; 174():97-103. PubMed ID: 25529657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reuse of wastepaper for the extraction of cellulose nanocrystals.
    Danial WH; Abdul Majid Z; Mohd Muhid MN; Triwahyono S; Bakar MB; Ramli Z
    Carbohydr Polym; 2015 Mar; 118():165-9. PubMed ID: 25542122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.