These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156. Nack M; Radu I; Gossing M; Bamann C; Bamberg E; von Mollard GF; Heberle J Photochem Photobiol Sci; 2010 Feb; 9(2):194-8. PubMed ID: 20126794 [TBL] [Abstract][Full Text] [Related]
3. Retinal isomerization and water-pore formation in channelrhodopsin-2. Ardevol A; Hummer G Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3557-3562. PubMed ID: 29555736 [TBL] [Abstract][Full Text] [Related]
11. Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2. VanGordon MR; Gyawali G; Rick SW; Rempe SB Biophys J; 2017 Mar; 112(5):943-952. PubMed ID: 28297653 [TBL] [Abstract][Full Text] [Related]
12. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2. Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616 [TBL] [Abstract][Full Text] [Related]
13. Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. Watanabe HC; Welke K; Sindhikara DJ; Hegemann P; Elstner M J Mol Biol; 2013 May; 425(10):1795-814. PubMed ID: 23376098 [TBL] [Abstract][Full Text] [Related]
14. Nonadiabatic Photodynamics of Retinal Protonated Schiff Base in Channelrhodopsin 2. Liang R; Liu F; Martínez TJ J Phys Chem Lett; 2019 Jun; 10(11):2862-2868. PubMed ID: 31083920 [TBL] [Abstract][Full Text] [Related]
15. Mechanism by which water and protein electrostatic interactions control proton transfer at the active site of channelrhodopsin. Adam S; Bondar AN PLoS One; 2018; 13(8):e0201298. PubMed ID: 30086158 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Kim YS; Kato HE; Yamashita K; Ito S; Inoue K; Ramakrishnan C; Fenno LE; Evans KE; Paggi JM; Dror RO; Kandori H; Kobilka BK; Deisseroth K Nature; 2018 Sep; 561(7723):343-348. PubMed ID: 30158696 [TBL] [Abstract][Full Text] [Related]
17. The form and function of channelrhodopsin. Deisseroth K; Hegemann P Science; 2017 Sep; 357(6356):. PubMed ID: 28912215 [TBL] [Abstract][Full Text] [Related]
18. Red-Tuning of the Channelrhodopsin Spectrum Using Long Conjugated Retinal Analogues. Shen YC; Sasaki T; Matsuyama T; Yamashita T; Shichida Y; Okitsu T; Yamano Y; Wada A; Ishizuka T; Yawo H; Imamoto Y Biochemistry; 2018 Sep; 57(38):5544-5556. PubMed ID: 30153419 [TBL] [Abstract][Full Text] [Related]
19. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function. Kaufmann JCD; Krause BS; Grimm C; Ritter E; Hegemann P; Bartl FJ J Biol Chem; 2017 Aug; 292(34):14205-14216. PubMed ID: 28659342 [TBL] [Abstract][Full Text] [Related]
20. An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin. Cheng C; Kamiya M; Takemoto M; Ishitani R; Nureki O; Yoshida N; Hayashi S Biophys J; 2018 Oct; 115(7):1281-1291. PubMed ID: 30236783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]