BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29170428)

  • 1. Complex three-dimensional self-assembly in proxies for atmospheric aerosols.
    Pfrang C; Rastogi K; Cabrera-Martinez ER; Seddon AM; Dicko C; Labrador A; Plivelic TS; Cowieson N; Squires AM
    Nat Commun; 2017 Nov; 8(1):1724. PubMed ID: 29170428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Self-Organization in Surfactant Atmospheric Aerosol Proxies.
    Milsom A; Squires AM; Ward AD; Pfrang C
    Acc Chem Res; 2023 Oct; 56(19):2555-2568. PubMed ID: 37688543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Nanostructures Accessible to an Organic Surfactant Atmospheric Aerosol Proxy.
    Milsom A; Squires AM; Quant I; Terrill NJ; Huband S; Woden B; Cabrera-Martinez ER; Pfrang C
    J Phys Chem A; 2022 Oct; 126(40):7331-7341. PubMed ID: 36169656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and evolution of aqueous organic aerosols via concurrent condensation and chemical aging.
    Djikaev YS; Ruckenstein E
    Adv Colloid Interface Sci; 2019 Mar; 265():45-67. PubMed ID: 30711797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.
    Dennis-Smither BJ; Hanford KL; Kwamena NO; Miles RE; Reid JP
    J Phys Chem A; 2012 Jun; 116(24):6159-68. PubMed ID: 22236112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfaces of Atmospheric Droplet Models Probed with Synchrotron XPS on a Liquid Microjet.
    Prisle NL
    Acc Chem Res; 2024 Jan; 57(2):177-187. PubMed ID: 38156821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between common organic acids and trace nucleation species in the Earth's atmosphere.
    Xu Y; Nadykto AB; Yu F; Herb J; Wang W
    J Phys Chem A; 2010 Jan; 114(1):387-96. PubMed ID: 19957986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy.
    Milsom A; Squires AM; Woden B; Terrill NJ; Ward AD; Pfrang C
    Faraday Discuss; 2021 Mar; 226():364-381. PubMed ID: 33284926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the contribution of secondary aerosols on aerosol scattering ensemble: a comparative analysis of the scattering abilities of different aerosol species.
    Arreyndip NA; Joseph E
    Opt Express; 2024 Jan; 32(3):4614-4626. PubMed ID: 38297658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.
    Djikaev YS; Ruckenstein E
    J Phys Chem A; 2018 May; 122(17):4322-4337. PubMed ID: 29668281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidation of oleate in submicron aqueous salt aerosols: evidence of a surface process.
    McNeill VF; Wolfe GM; Thornton JA
    J Phys Chem A; 2007 Feb; 111(6):1073-83. PubMed ID: 17243657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-Liquid Phase Separation in Single Suspended Aerosol Microdroplets.
    Tong YK; Ye A
    Anal Chem; 2023 Aug; 95(33):12200-12208. PubMed ID: 37556845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary organic aerosol formation during evaporation of droplets containing atmospheric aldehydes, amines, and ammonium sulfate.
    Galloway MM; Powelson MH; Sedehi N; Wood SE; Millage KD; Kononenko JA; Rynaski AD; De Haan DO
    Environ Sci Technol; 2014 Dec; 48(24):14417-25. PubMed ID: 25409489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Brown Carbon to Direct Radiative Forcing over the Indo-Gangetic Plain.
    Shamjad PM; Tripathi SN; Pathak R; Hallquist M; Arola A; Bergin MH
    Environ Sci Technol; 2015 Sep; 49(17):10474-81. PubMed ID: 26237141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties.
    King MD; Thompson KC; Ward AD
    J Am Chem Soc; 2004 Dec; 126(51):16710-1. PubMed ID: 15612694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy for profiling physical and chemical properties of atmospheric aerosol particles: A review.
    Estefany C; Sun Z; Hong Z; Du J
    Ecotoxicol Environ Saf; 2023 Jan; 249():114405. PubMed ID: 36508807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.
    Jacobson MZ
    Nature; 2001 Feb; 409(6821):695-7. PubMed ID: 11217854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols.
    Wang B; O'Brien RE; Kelly ST; Shilling JE; Moffet RC; Gilles MK; Laskin A
    J Phys Chem A; 2015 May; 119(19):4498-508. PubMed ID: 25386912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global atmospheric change: potential health effects of acid aerosol and oxidant gas mixtures.
    Last JA
    Environ Health Perspect; 1991 Dec; 96():151-7. PubMed ID: 1820258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 10th Anniversary review: applications of analytical techniques in laboratory studies of the chemical and climatic impacts of mineral dust aerosol in the Earth's atmosphere.
    Hatch CD; Grassian VH
    J Environ Monit; 2008 Aug; 10(8):919-34. PubMed ID: 18688461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.