These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29170428)

  • 1. Complex three-dimensional self-assembly in proxies for atmospheric aerosols.
    Pfrang C; Rastogi K; Cabrera-Martinez ER; Seddon AM; Dicko C; Labrador A; Plivelic TS; Cowieson N; Squires AM
    Nat Commun; 2017 Nov; 8(1):1724. PubMed ID: 29170428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Self-Organization in Surfactant Atmospheric Aerosol Proxies.
    Milsom A; Squires AM; Ward AD; Pfrang C
    Acc Chem Res; 2023 Oct; 56(19):2555-2568. PubMed ID: 37688543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Nanostructures Accessible to an Organic Surfactant Atmospheric Aerosol Proxy.
    Milsom A; Squires AM; Quant I; Terrill NJ; Huband S; Woden B; Cabrera-Martinez ER; Pfrang C
    J Phys Chem A; 2022 Oct; 126(40):7331-7341. PubMed ID: 36169656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and evolution of aqueous organic aerosols via concurrent condensation and chemical aging.
    Djikaev YS; Ruckenstein E
    Adv Colloid Interface Sci; 2019 Mar; 265():45-67. PubMed ID: 30711797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.
    Dennis-Smither BJ; Hanford KL; Kwamena NO; Miles RE; Reid JP
    J Phys Chem A; 2012 Jun; 116(24):6159-68. PubMed ID: 22236112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfaces of Atmospheric Droplet Models Probed with Synchrotron XPS on a Liquid Microjet.
    Prisle NL
    Acc Chem Res; 2024 Jan; 57(2):177-187. PubMed ID: 38156821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between common organic acids and trace nucleation species in the Earth's atmosphere.
    Xu Y; Nadykto AB; Yu F; Herb J; Wang W
    J Phys Chem A; 2010 Jan; 114(1):387-96. PubMed ID: 19957986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy.
    Milsom A; Squires AM; Woden B; Terrill NJ; Ward AD; Pfrang C
    Faraday Discuss; 2021 Mar; 226():364-381. PubMed ID: 33284926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the contribution of secondary aerosols on aerosol scattering ensemble: a comparative analysis of the scattering abilities of different aerosol species.
    Arreyndip NA; Joseph E
    Opt Express; 2024 Jan; 32(3):4614-4626. PubMed ID: 38297658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.
    Djikaev YS; Ruckenstein E
    J Phys Chem A; 2018 May; 122(17):4322-4337. PubMed ID: 29668281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidation of oleate in submicron aqueous salt aerosols: evidence of a surface process.
    McNeill VF; Wolfe GM; Thornton JA
    J Phys Chem A; 2007 Feb; 111(6):1073-83. PubMed ID: 17243657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-Liquid Phase Separation in Single Suspended Aerosol Microdroplets.
    Tong YK; Ye A
    Anal Chem; 2023 Aug; 95(33):12200-12208. PubMed ID: 37556845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary organic aerosol formation during evaporation of droplets containing atmospheric aldehydes, amines, and ammonium sulfate.
    Galloway MM; Powelson MH; Sedehi N; Wood SE; Millage KD; Kononenko JA; Rynaski AD; De Haan DO
    Environ Sci Technol; 2014 Dec; 48(24):14417-25. PubMed ID: 25409489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Brown Carbon to Direct Radiative Forcing over the Indo-Gangetic Plain.
    Shamjad PM; Tripathi SN; Pathak R; Hallquist M; Arola A; Bergin MH
    Environ Sci Technol; 2015 Sep; 49(17):10474-81. PubMed ID: 26237141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties.
    King MD; Thompson KC; Ward AD
    J Am Chem Soc; 2004 Dec; 126(51):16710-1. PubMed ID: 15612694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy for profiling physical and chemical properties of atmospheric aerosol particles: A review.
    Estefany C; Sun Z; Hong Z; Du J
    Ecotoxicol Environ Saf; 2023 Jan; 249():114405. PubMed ID: 36508807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.
    Jacobson MZ
    Nature; 2001 Feb; 409(6821):695-7. PubMed ID: 11217854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols.
    Wang B; O'Brien RE; Kelly ST; Shilling JE; Moffet RC; Gilles MK; Laskin A
    J Phys Chem A; 2015 May; 119(19):4498-508. PubMed ID: 25386912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global atmospheric change: potential health effects of acid aerosol and oxidant gas mixtures.
    Last JA
    Environ Health Perspect; 1991 Dec; 96():151-7. PubMed ID: 1820258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 10th Anniversary review: applications of analytical techniques in laboratory studies of the chemical and climatic impacts of mineral dust aerosol in the Earth's atmosphere.
    Hatch CD; Grassian VH
    J Environ Monit; 2008 Aug; 10(8):919-34. PubMed ID: 18688461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.