BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29170526)

  • 1. Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data.
    Lu X; Lu J; Liao B; Li X; Qian X; Li K
    Sci Rep; 2017 Nov; 7(1):16188. PubMed ID: 29170526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying candidate drivers of drug response in heterogeneous cancer by mining high throughput genomics data.
    Nabavi S
    BMC Genomics; 2016 Aug; 17(1):638. PubMed ID: 27526849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach.
    Zhang D; Chen P; Zheng CH; Xia J
    Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering potential driver genes through an integrated model of somatic mutation profiles and gene functional information.
    Xi J; Wang M; Li A
    Mol Biosyst; 2017 Sep; 13(10):2135-2144. PubMed ID: 28825429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Cancer Driver Modules Based on Graph Clustering from Multiomics Data.
    Zhang W; Wang SL; Liu Y
    J Comput Biol; 2021 Oct; 28(10):1007-1020. PubMed ID: 34529511
    [No Abstract]   [Full Text] [Related]  

  • 12. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix factorization methods for integrative cancer genomics.
    Zhang S; Zhou XJ
    Methods Mol Biol; 2014; 1176():229-42. PubMed ID: 25030932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Cluster-Based Computational Method to Identify miRNA Regulatory Modules.
    Luo J; Pan C; Xiang G; Yin Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):681-687. PubMed ID: 29993835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated weighted gene co-expression network analysis reveals biomarkers associated with prognosis of high-grade serous ovarian cancer.
    Wang B; Chao S; Guo B
    J Clin Lab Anal; 2022 Feb; 36(2):e24165. PubMed ID: 34997982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating multiple types of data to identify microRNA-gene co-modules.
    Zhang S
    Methods Mol Biol; 2013; 1049():215-29. PubMed ID: 23913219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A network-pathway based module identification for predicting the prognosis of ovarian cancer patients.
    Wang X; Wang SS; Zhou L; Yu L; Zhang LM
    J Ovarian Res; 2016 Nov; 9(1):73. PubMed ID: 27806724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic module approach identifies altered genes and pathways in four types of ovarian cancer.
    Liu J; Wang HL; Ma FM; Guo HP; Fang NN; Wang SS; Li XH
    Mol Med Rep; 2017 Dec; 16(6):7907-7914. PubMed ID: 28983627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network based stratification of major cancers by integrating somatic mutation and gene expression data.
    He Z; Zhang J; Yuan X; Liu Z; Liu B; Tuo S; Liu Y
    PLoS One; 2017; 12(5):e0177662. PubMed ID: 28520777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact on high-grade serous ovarian cancer of obesity and lipid metabolism-related gene expression patterns: the underestimated driving force affecting prognosis.
    Cuello MA; Kato S; Liberona F
    J Cell Mol Med; 2018 Mar; 22(3):1805-1815. PubMed ID: 29266765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.