BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29170526)

  • 21. An unsupervised learning approach to find ovarian cancer genes through integration of biological data.
    Ma C; Chen Y; Wilkins D; Chen X; Zhang J
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S3. PubMed ID: 26328548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Five-Gene Expression Signature Predicts Ovarian Cancer Metastasis.
    Gu Y; Zhang S
    Crit Rev Eukaryot Gene Expr; 2021; 31(5):41-50. PubMed ID: 34591389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic prediction of key genes for ovarian cancer by co-expression network analysis.
    Wang M; Wang J; Liu J; Zhu L; Ma H; Zou J; Wu W; Wang K
    J Cell Mol Med; 2020 Jun; 24(11):6298-6307. PubMed ID: 32319226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a key glioblastoma candidate gene, FUBP3, based on weighted gene co-expression network analysis.
    Li J; Zhang Z; Guo K; Wu S; Guo C; Zhang X; Wang Z
    BMC Neurol; 2022 Apr; 22(1):139. PubMed ID: 35413821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene-microRNA network module analysis for ovarian cancer.
    Zhang S; Ng MK
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):117. PubMed ID: 28155675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated analysis of recurrent properties of cancer genes to identify novel drivers.
    D'Antonio M; Ciccarelli FD
    Genome Biol; 2013 May; 14(5):R52. PubMed ID: 23718799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of modules and hub genes associated with platinum-based chemotherapy resistance and treatment response in ovarian cancer by weighted gene co-expression network analysis.
    Zhang L; Zhang X; Fan S; Zhang Z
    Medicine (Baltimore); 2019 Nov; 98(44):e17803. PubMed ID: 31689861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data.
    Nguyen QH; Le DH
    Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular profiling of mucinous epithelial ovarian cancer by weighted gene co-expression network analysis.
    Zhang GH; Chen MM; Kai JY; Ma Q; Zhong AL; Xie SH; Zheng H; Wang YC; Tong Y; Lu RQ; Guo L
    Gene; 2019 Aug; 709():56-64. PubMed ID: 31108164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying mutated driver pathways in cancer by integrating multi-omics data.
    Wu J; Cai Q; Wang J; Liao Y
    Comput Biol Chem; 2019 Jun; 80():159-167. PubMed ID: 30959272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The identification of six risk genes for ovarian cancer platinum response based on global network algorithm and verification analysis.
    Xing L; Mi W; Zhang Y; Tian S; Zhang Y; Qi R; Lou G; Zhang C
    J Cell Mol Med; 2020 Sep; 24(17):9839-9852. PubMed ID: 32762026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph.
    Wang C; Shi J; Cai J; Zhang Y; Zheng X; Zhang N
    BMC Bioinformatics; 2022 Jul; 23(1):277. PubMed ID: 35831792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cancer core modules identification through genomic and transcriptomic changes correlation detection at network level.
    Li W; Wang R; Bai L; Yan Z; Sun Z
    BMC Syst Biol; 2012 Jun; 6():64. PubMed ID: 22691569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depicting the genetic architecture of pediatric cancers through an integrative gene network approach.
    Savary C; Kim A; Lespagnol A; Gandemer V; Pellier I; Andrieu C; Pagès G; Galibert MD; Blum Y; de Tayrac M
    Sci Rep; 2020 Jan; 10(1):1224. PubMed ID: 31988326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Next-generation sequencing-based genomic profiling analysis reveals novel mutations for clinical diagnosis in Chinese primary epithelial ovarian cancer patients.
    Zhang L; Luo M; Yang H; Zhu S; Cheng X; Qing C
    J Ovarian Res; 2019 Feb; 12(1):19. PubMed ID: 30786925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment.
    Zhang W; Ota T; Shridhar V; Chien J; Wu B; Kuang R
    PLoS Comput Biol; 2013; 9(3):e1002975. PubMed ID: 23555212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.