BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29170548)

  • 1. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors.
    Lin X; Wegner B; Lee KM; Fusella MA; Zhang F; Moudgil K; Rand BP; Barlow S; Marder SR; Koch N; Kahn A
    Nat Mater; 2017 Dec; 16(12):1209-1215. PubMed ID: 29170548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants.
    Lu Y; Wang JY; Pei J
    Acc Chem Res; 2021 Jul; 54(13):2871-2883. PubMed ID: 34152131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organometallic and Organic Dimers: Moderately Air-Stable, Yet Highly Reducing, n-Dopants.
    Mohapatra SK; Marder SR; Barlow S
    Acc Chem Res; 2022 Feb; 55(3):319-332. PubMed ID: 35040310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal Limit for Air-Stable Molecular n-Doping in Organic Semiconductors.
    Schwarze M; Tietze ML; Ortmann F; Kleemann H; Leo K
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40566-40571. PubMed ID: 32805922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.
    Tang CG; Ang MC; Choo KK; Keerthi V; Tan JK; Syafiqah MN; Kugler T; Burroughes JH; Png RQ; Chua LL; Ho PK
    Nature; 2016 Nov; 539(7630):536-540. PubMed ID: 27882976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.
    Salzmann I; Heimel G; Oehzelt M; Winkler S; Koch N
    Acc Chem Res; 2016 Mar; 49(3):370-8. PubMed ID: 26854611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air stable organic salt as an n-type dopant for efficient and stable organic light-emitting diodes.
    Bin Z; Duan L; Qiu Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6444-50. PubMed ID: 25768295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making silver a stronger n-dopant than cesium via in situ coordination reaction for organic electronics.
    Bin Z; Dong G; Wei P; Liu Z; Zhang D; Su R; Qiu Y; Duan L
    Nat Commun; 2019 Feb; 10(1):866. PubMed ID: 30787287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally Activated n-Doping of Organic Semiconductors Achieved by N-Heterocyclic Carbene Based Dopant.
    Ding YF; Yang CY; Huang CX; Lu Y; Yao ZF; Pan CK; Wang JY; Pei J
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5816-5820. PubMed ID: 33231911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disorder-driven doping activation in organic semiconductors.
    Fediai A; Emering A; Symalla F; Wenzel W
    Phys Chem Chem Phys; 2020 May; 22(18):10256-10264. PubMed ID: 32352139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal-catalysed molecular n-doping of organic semiconductors.
    Guo H; Yang CY; Zhang X; Motta A; Feng K; Xia Y; Shi Y; Wu Z; Yang K; Chen J; Liao Q; Tang Y; Sun H; Woo HY; Fabiano S; Facchetti A; Guo X
    Nature; 2021 Nov; 599(7883):67-73. PubMed ID: 34732866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Organic Superbase Dopants for Ultraefficient N-Doping of Organic Semiconductors.
    Wei H; Cheng Z; Wu T; Liu Y; Guo J; Chen PA; Xia J; Xie H; Qiu X; Liu T; Zhang B; Hui J; Zeng Z; Bai Y; Hu Y
    Adv Mater; 2023 Jun; 35(22):e2300084. PubMed ID: 36929089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the n-Doping Mechanism of an Air-Stable Small-Molecule Precursor.
    Schwarze M; Naab BD; Tietze ML; Scholz R; Pahner P; Bussolotti F; Kera S; Kasemann D; Bao Z; Leo K
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1340-1346. PubMed ID: 29236472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal Strategy for Efficient Electron Injection into Organic Semiconductors Utilizing Hydrogen Bonds.
    Fukagawa H; Hasegawa M; Morii K; Suzuki K; Sasaki T; Shimizu T
    Adv Mater; 2019 Oct; 31(43):e1904201. PubMed ID: 31490592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and air-stable n-type doping in organic semiconductors.
    Yuan D; Liu W; Zhu X
    Chem Soc Rev; 2023 Jun; 52(11):3842-3872. PubMed ID: 37183967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doping Versatile n-Type Organic Semiconductors via Room Temperature Solution-Processable Anionic Dopants.
    Chueh CC; Li CZ; Ding F; Li Z; Cernetic N; Li X; Jen AK
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1136-1144. PubMed ID: 27966345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adduct-based p-doping of organic semiconductors.
    Sakai N; Warren R; Zhang F; Nayak S; Liu J; Kesava SV; Lin YH; Biswal HS; Lin X; Grovenor C; Malinauskas T; Basu A; Anthopoulos TD; Getautis V; Kahn A; Riede M; Nayak PK; Snaith HJ
    Nat Mater; 2021 Sep; 20(9):1248-1254. PubMed ID: 33888905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doping-Induced Dielectric Catastrophe Prompts Free-Carrier Release in Organic Semiconductors.
    Comin M; Fratini S; Blase X; D'Avino G
    Adv Mater; 2022 Jan; 34(2):e2105376. PubMed ID: 34647372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Molecular Doping in Organic Semiconductors.
    Jacobs IE; Moulé AJ
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28921668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells.
    Burschka J; Dualeh A; Kessler F; Baranoff E; Cevey-Ha NL; Yi C; Nazeeruddin MK; Grätzel M
    J Am Chem Soc; 2011 Nov; 133(45):18042-5. PubMed ID: 21972850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.