These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29170579)

  • 1. Predicting the Biomechanical Strength of Proximal Femur Specimens through High Dimensional Geometric Features and Support Vector Regression.
    Yang CC; Nagarajan MB; Huber MB; Carballido-Gamio J; Bauer JS; Baum T; Eckstein F; Lochmüller E; Majumdar S; Link TM; Wismüller A
    Proc SPIE Int Soc Opt Eng; 2013 Mar; 8672():. PubMed ID: 29170579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the Biomechanical Strength of Proximal Femur Specimens with Minkowski Functionals and Support Vector Regression.
    Yang CC; Nagarajan MB; Huber MB; Carballido-Gamio J; Bauer JS; Baum T; Eckstein F; Lochmüller EM; Link TM; Wismüller A
    Proc SPIE Int Soc Opt Eng; 2014 Mar; 9038():. PubMed ID: 29170582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Anisotropic 3D Minkowski Functionals for Trabecular Bone Characterization and Biomechanical Strength Prediction in Proximal Femur Specimens.
    Nagarajan MB; De T; Lochmüller EM; Eckstein F; Wismüller A
    Proc SPIE Int Soc Opt Eng; 2014 Apr; 9038():. PubMed ID: 29170581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving bone strength prediction in human proximal femur specimens through geometrical characterization of trabecular bone microarchitecture and support vector regression.
    Yang CC; Nagarajan MB; Huber MB; Carballido-Gamio J; Bauer JS; Baum T; Eckstein F; Lochmüller E; Majumdar S; Link TM; Wismüller A
    J Electron Imaging; 2014 Feb; 23(1):013013. PubMed ID: 24860245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated 3D trabecular bone structure analysis of the proximal femur--prediction of biomechanical strength by CT and DXA.
    Baum T; Carballido-Gamio J; Huber MB; Müller D; Monetti R; Räth C; Eckstein F; Lochmüller EM; Majumdar S; Rummeny EJ; Link TM; Bauer JS
    Osteoporos Int; 2010 Sep; 21(9):1553-64. PubMed ID: 19859642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression.
    Huber MB; Lancianese SL; Nagarajan MB; Ikpot IZ; Lerner AL; Wismuller A
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1820-6. PubMed ID: 21356612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure.
    Checefsky WA; Abidin AZ; Nagarajan MB; Bauer JS; Baum T; Wismüller A
    Proc SPIE Int Soc Opt Eng; 2016; 9785():. PubMed ID: 29367797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT--correlation with biomechanical strength measurement.
    Huber MB; Carballido-Gamio J; Bauer JS; Baum T; Eckstein F; Lochmüller EM; Majumdar S; Link TM
    Radiology; 2008 May; 247(2):472-81. PubMed ID: 18430879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing Trabecular Bone structure for Assessing Vertebral Fracture Risk on Volumetric Quantitative Computed Tomography.
    Nagarajan MB; Checefsky WA; Abidin AZ; Tsai H; Wang X; Hobbs SK; Bauer JS; Baum T; Wismüller A
    Proc SPIE Int Soc Opt Eng; 2015; 9417():. PubMed ID: 29200590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of trabecular bone of the proximal femur using multislice computed tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical strength in vitro.
    Bauer JS; Kohlmann S; Eckstein F; Mueller D; Lochmüller EM; Link TM
    Calcif Tissue Int; 2006 Feb; 78(2):78-89. PubMed ID: 16467973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs.
    Huber MB; Carballido-Gamio J; Fritscher K; Schubert R; Haenni M; Hengg C; Majumdar S; Link TM
    Med Phys; 2009 Nov; 36(11):5089-98. PubMed ID: 19994519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.
    Majumdar S; Kothari M; Augat P; Newitt DC; Link TM; Lin JC; Lang T; Lu Y; Genant HK
    Bone; 1998 May; 22(5):445-54. PubMed ID: 9600777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro.
    Boehm HF; Raeth C; Monetti RA; Mueller D; Newitt D; Majumdar S; Rummeny E; Morfill G; Link TM
    Invest Radiol; 2003 May; 38(5):269-80. PubMed ID: 12750616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations.
    Schwaiger BJ; Kopperdahl DL; Nardo L; Facchetti L; Gersing AS; Neumann J; Lee KJ; Keaveny TM; Link TM
    Bone; 2017 Aug; 101():62-69. PubMed ID: 28442297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of non-invasive assessments of strength of the proximal femur.
    Johannesdottir F; Thrall E; Muller J; Keaveny TM; Kopperdahl DL; Bouxsein ML
    Bone; 2017 Dec; 105():93-102. PubMed ID: 28739416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose and sparse sampling MDCT-based femoral bone strength prediction using finite element analysis.
    Rayudu NM; Anitha DP; Mei K; Zoffl F; Kopp FK; Sollmann N; Löffler MT; Kirschke JS; Noël PB; Subburaj K; Baum T
    Arch Osteoporos; 2020 Feb; 15(1):17. PubMed ID: 32088769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy logic structure analysis of trabecular bone of the calcaneus to estimate proximal femur fracture load and discriminate subjects with and without vertebral fractures using high-resolution magnetic resonance imaging at 1.5 T and 3 T.
    Patel PV; Eckstein F; Carballido-Gamio J; Phan C; Matsuura M; Lochmüller EM; Majumdar S; Link TM
    Calcif Tissue Int; 2007 Oct; 81(4):294-304. PubMed ID: 17705050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone.
    Bousson V; Le Bras A; Roqueplan F; Kang Y; Mitton D; Kolta S; Bergot C; Skalli W; Vicaut E; Kalender W; Engelke K; Laredo JD
    Osteoporos Int; 2006; 17(6):855-64. PubMed ID: 16547689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing.
    Diederichs G; Link TM; Kentenich M; Schwieger K; Huber MB; Burghardt AJ; Majumdar S; Rogalla P; Issever AS
    Bone; 2009 May; 44(5):976-83. PubMed ID: 19442610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the individual fracture risk of the proximal femur by using statistical appearance models.
    Schuler B; Fritscher KD; Kuhn V; Eckstein F; Link TM; Schubert R
    Med Phys; 2010 Jun; 37(6):2560-71. PubMed ID: 20632568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.