These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29170715)

  • 41. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity.
    Hong Y; Ye SH; Pelinescu AL; Wagner WR
    Biomacromolecules; 2012 Nov; 13(11):3686-94. PubMed ID: 23035885
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds.
    Mi HY; Jing X; Salick MR; Cordie TM; Peng XF; Turng LS
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):960-70. PubMed ID: 25176285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization.
    Gregory GL; Sulley GS; Carrodeguas LP; Chen TTD; Santmarti A; Terrill NJ; Lee KY; Williams CK
    Chem Sci; 2020 May; 11(25):6567-6581. PubMed ID: 34094122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermoplastic PCL-
    Güney A; Gardiner C; McCormack A; Malda J; Grijpma DW
    Bioengineering (Basel); 2018 Nov; 5(4):. PubMed ID: 30441879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.
    Atzet S; Curtin S; Trinh P; Bryant S; Ratner B
    Biomacromolecules; 2008 Dec; 9(12):3370-7. PubMed ID: 19061434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers.
    Cohn D; Salomon AH
    Biomaterials; 2005 May; 26(15):2297-305. PubMed ID: 15585232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polysiloxane-Based Polyurethanes with High Strength and Recyclability.
    Wang W; Bai X; Sun S; Gao Y; Li F; Hu S
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of metformin chain extended polyurethane elastomers as bone regenerative films.
    Yagci BS; Odabas S; Aksoy EA
    Eur J Pharm Sci; 2019 Apr; 131():84-92. PubMed ID: 30742978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyurethane/chitosan/hyaluronic acid scaffolds: providing an optimum environment for fibroblast growth.
    Hashemi SS; Rajabi SS; Mahmoudi R; Ghanbari A; Zibara K; Barmak MJ
    J Wound Care; 2020 Oct; 29(10):586-596. PubMed ID: 33052794
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering.
    Zou F; Li R; Jiang J; Mo X; Gu G; Guo Z; Chen Z
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2255-2270. PubMed ID: 29034774
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering.
    Zhang Y; Tran RT; Gyawali D; Yang J
    Int J Biomater Res Eng; 2011 Jan; 1(1):18-31. PubMed ID: 23565318
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel polyurethane-based biodegradable elastomer as a promising material for skeletal muscle tissue engineering.
    Ergene E; Yagci BS; Gokyer S; Eyidogan A; Aksoy EA; Yilgor Huri P
    Biomed Mater; 2019 Feb; 14(2):025014. PubMed ID: 30665203
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Green Biodegradable Polylactide-Based Polyurethane Triblock Copolymers Reinforced with Cellulose Nanowhiskers.
    Khattab M; Abdel Hady N; Dahman Y
    J Funct Biomater; 2023 Feb; 14(3):. PubMed ID: 36976042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.
    Sarkar D; Yang JC; Gupta AS; Lopina ST
    J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.