BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29170910)

  • 1. Bioenergetic reprogramming plasticity under nitrogen depletion by the unicellular green alga Scenedesmus obliquus.
    Papazi A; Korelidou A; Andronis E; Parasyri A; Stamatis N; Kotzabasis K
    Planta; 2018 Mar; 247(3):679-692. PubMed ID: 29170910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus - The biodegradation strategy of microalgae.
    Papazi A; Karamanli M; Kotzabasis K
    J Biotechnol; 2019 Apr; 296():61-68. PubMed ID: 30890327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Rational" management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus.
    Papazi A; Kotzabasis K
    PLoS One; 2013; 8(4):e61682. PubMed ID: 23613903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergetic strategy for the biodegradation of p-cresol by the unicellular green alga Scenedesmus obliquus.
    Papazi A; Assimakopoulos K; Kotzabasis K
    PLoS One; 2012; 7(12):e51852. PubMed ID: 23251641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High yields of hydrogen production induced by meta-substituted dichlorophenols biodegradation from the green alga Scenedesmus obliquus.
    Papazi A; Andronis E; Ioannidis NE; Chaniotakis N; Kotzabasis K
    PLoS One; 2012; 7(11):e49037. PubMed ID: 23145057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds: exogenously supplied energy and carbon sources adjust the level of biodegradation.
    Papazi A; Kotzabasis K
    J Biotechnol; 2007 May; 129(4):706-16. PubMed ID: 17403549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous bioremediation of Disperse orange-2RL Azo dye and fatty acids production by Scenedesmus obliquus cultured under mixotrophic and heterotrophic conditions.
    Hamouda RA; El-Naggar NE; Abou-El-Souod GW
    Sci Rep; 2022 Dec; 12(1):20768. PubMed ID: 36456621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen-dependent metabolic regulation of lipid production in microalga Scenedesmus vacuolatus.
    Gupta N; Khare P; Singh DP
    Ecotoxicol Environ Saf; 2019 Jun; 174():706-713. PubMed ID: 30878807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies.
    Ho SH; Chan MC; Liu CC; Chen CY; Lee WL; Lee DJ; Chang JS
    Bioresour Technol; 2014; 152():275-82. PubMed ID: 24296122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization.
    de Jaeger L; Verbeek RE; Draaisma RB; Martens DE; Springer J; Eggink G; Wijffels RH
    Biotechnol Biofuels; 2014; 7():69. PubMed ID: 24920957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Sulfur Starvation on Growth Rates, Biomass and Lipid Contents in the Green Microalga
    Morowvat MH; Ghasemi Y
    Recent Pat Biotechnol; 2020; 14(2):145-153. PubMed ID: 31916524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation.
    Ho SH; Kondo A; Hasunuma T; Chang JS
    Bioresour Technol; 2013 Sep; 143():163-71. PubMed ID: 23792755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and RNA-seq transcriptomic analysis of a Scenedesmus obliqnus mutant with enhanced photosynthesis efficiency and lipid productivity.
    Xi Y; Yin L; Chi ZY; Luo G
    Sci Rep; 2021 Jun; 11(1):11795. PubMed ID: 34083552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide.
    Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y
    Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production.
    El-Sheekh M; Abomohra Ael-F; Hanelt D
    World J Microbiol Biotechnol; 2013 May; 29(5):915-22. PubMed ID: 23269508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production.
    Jin H; Zhang H; Zhou Z; Li K; Hou G; Xu Q; Chuai W; Zhang C; Han D; Hu Q
    Biotechnol Bioeng; 2020 Jan; 117(1):96-108. PubMed ID: 31612991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell growth and lipid accumulation of a microalgal mutant
    Ma C; Zhang YB; Ho SH; Xing DF; Ren NQ; Liu BF
    Biotechnol Biofuels; 2017; 10():260. PubMed ID: 29151889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii.
    Philipps G; Happe T; Hemschemeier A
    Planta; 2012 Apr; 235(4):729-45. PubMed ID: 22020754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress.
    Chu FF; Chu PN; Shen XF; Lam PK; Zeng RJ
    Bioresour Technol; 2014; 152():241-6. PubMed ID: 24292204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation pathways of erythromycin and biochemical responses related to algal growth and lipid synthesis in a microalga-effluent system.
    Wang X; Dou X; Wu J; Meng F
    Environ Res; 2021 Apr; 195():110873. PubMed ID: 33582131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.