These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29170950)

  • 1. Enzyme Nicotinamide Cofactor Specificity Reversal Guided by Automated Structural Analysis and Library Design.
    Cahn JKB; Brinkmann-Chen S; Arnold FH
    Methods Mol Biol; 2018; 1671():15-26. PubMed ID: 29170950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases.
    Cahn JK; Werlang CA; Baumschlager A; Brinkmann-Chen S; Mayo SL; Arnold FH
    ACS Synth Biol; 2017 Feb; 6(2):326-333. PubMed ID: 27648601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Candida boidinii formate dehydrogenase for activity with the non-canonical cofactor 3'-NADP(H).
    Vainstein S; Banta S
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37658768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational proteomics II: electrostatic nature of cofactor preference in the short-chain oxidoreductase (SCOR) enzyme family.
    Pletnev VZ; Weeks CM; Duax WL
    Proteins; 2004 Nov; 57(2):294-301. PubMed ID: 15340916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H).
    Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D
    FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a biliverdin IXalpha reductase enzyme-cofactor complex.
    Whitby FG; Phillips JD; Hill CP; McCoubrey W; Maines MD
    J Mol Biol; 2002 Jun; 319(5):1199-210. PubMed ID: 12079357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. carba Nicotinamide Adenine Dinucleotide Phosphate: Robust Cofactor for Redox Biocatalysis.
    Zachos I; Döring M; Tafertshofer G; Simon RC; Sieber V
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14701-14706. PubMed ID: 33719153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of 3-isopropylmalate dehydrogenase in complex with NAD+: ligand-induced loop closing and mechanism for cofactor specificity.
    Hurley JH; Dean AM
    Structure; 1994 Nov; 2(11):1007-16. PubMed ID: 7881901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding.
    Carugo O; Argos P
    Proteins; 1997 May; 28(1):10-28. PubMed ID: 9144787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzymic activity of NADP derivatives alkylated at 2'-phosphate and 6-amino groups.
    Okuda K; Urabe I; Okada H
    Eur J Biochem; 1985 Mar; 147(2):249-53. PubMed ID: 3971981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD-binding domains of dehydrogenases.
    Lesk AM
    Curr Opin Struct Biol; 1995 Dec; 5(6):775-83. PubMed ID: 8749365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH.
    Brinkmann-Chen S; Flock T; Cahn JK; Snow CD; Brustad EM; McIntosh JA; Meinhold P; Zhang L; Arnold FH
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):10946-51. PubMed ID: 23776225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity.
    Ugamraj HS; Dang K; Ouisse LH; Buelow B; Chini EN; Castello G; Allison J; Clarke SC; Davison LM; Buelow R; Deng R; Iyer S; Schellenberger U; Manika SN; Bijpuria S; Musnier A; Poupon A; Cuturi MC; van Schooten W; Dalvi P
    MAbs; 2022; 14(1):2095949. PubMed ID: 35867844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges.
    Chánique AM; Parra LP
    Front Microbiol; 2018; 9():194. PubMed ID: 29491854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis.
    Black WB; Zhang L; Mak WS; Maxel S; Cui Y; King E; Fong B; Sanchez Martinez A; Siegel JB; Li H
    Nat Chem Biol; 2020 Jan; 16(1):87-94. PubMed ID: 31768035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes.
    Bell CE; Yeates TO; Eisenberg D
    Protein Sci; 1997 Oct; 6(10):2084-96. PubMed ID: 9336832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile selective evolutionary pressure using synthetic defect in universal metabolism.
    Sellés Vidal L; Murray JW; Heap JT
    Nat Commun; 2021 Nov; 12(1):6859. PubMed ID: 34824282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant.
    Hurley JH; Chen R; Dean AM
    Biochemistry; 1996 May; 35(18):5670-8. PubMed ID: 8639526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.