These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 29170960)
1. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR. Jakočiūnas T; Jensen ED; Jensen MK; Keasling JD Methods Mol Biol; 2018; 1671():185-201. PubMed ID: 29170960 [TBL] [Abstract][Full Text] [Related]
2. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. Jakočiūnas T; Rajkumar AS; Zhang J; Arsovska D; Rodriguez A; Jendresen CB; Skjødt ML; Nielsen AT; Borodina I; Jensen MK; Keasling JD ACS Synth Biol; 2015 Nov; 4(11):1226-34. PubMed ID: 25781611 [TBL] [Abstract][Full Text] [Related]
3. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337 [TBL] [Abstract][Full Text] [Related]
4. Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9. Žun G; Doberšek K; Petrovič U Yeast; 2023 Jan; 40(1):32-41. PubMed ID: 36536407 [TBL] [Abstract][Full Text] [Related]
5. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system. Baek S; Utomo JC; Lee JY; Dalal K; Yoon YJ; Ro DK Metab Eng; 2021 Mar; 64():111-121. PubMed ID: 33549837 [TBL] [Abstract][Full Text] [Related]
6. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration. Huang S; Geng A J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629 [TBL] [Abstract][Full Text] [Related]
7. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae. Vanegas KG; Lehka BJ; Mortensen UH Microb Cell Fact; 2017 Feb; 16(1):25. PubMed ID: 28179021 [TBL] [Abstract][Full Text] [Related]
8. Assessment of Cre-lox and CRISPR-Cas9 as tools for recycling of multiple-integrated selection markers in Saccharomyces cerevisiae. Moon HY; Sim GH; Kim HJ; Kim K; Kang HA J Microbiol; 2022 Jan; 60(1):18-30. PubMed ID: 34964942 [TBL] [Abstract][Full Text] [Related]
9. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Shi S; Liang Y; Zhang MM; Ang EL; Zhao H Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089 [TBL] [Abstract][Full Text] [Related]
10. CMI: CRISPR/Cas9 Based Efficient Multiplexed Integration in Meng J; Qiu Y; Zhang Y; Zhao H; Shi S ACS Synth Biol; 2023 May; 12(5):1408-1414. PubMed ID: 36853024 [TBL] [Abstract][Full Text] [Related]
12. Delta Integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae. Shi S; Liang Y; Ang EL; Zhao H Methods Mol Biol; 2019; 1927():73-91. PubMed ID: 30788786 [TBL] [Abstract][Full Text] [Related]
13. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9. EauClaire SF; Zhang J; Rivera CG; Huang LL J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1001-15. PubMed ID: 27138038 [TBL] [Abstract][Full Text] [Related]
14. EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/Cas9 Applications in Jacobus AP; Barreto JA; de Bem LS; Menegon YA; Fier Í; Bueno JGR; Dos Santos LV; Gross J ACS Synth Biol; 2022 Nov; 11(11):3886-3891. PubMed ID: 36257021 [TBL] [Abstract][Full Text] [Related]
15. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae. Levi O; Arava Y Curr Microbiol; 2020 Mar; 77(3):468-478. PubMed ID: 31901956 [TBL] [Abstract][Full Text] [Related]
16. Expanding the neutral sites for integrated gene expression in Saccharomyces cerevisiae. Kong S; Yu W; Gao N; Zhai X; Zhou YJ FEMS Microbiol Lett; 2022 Sep; 369(1):. PubMed ID: 35981819 [TBL] [Abstract][Full Text] [Related]
17. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering. Yuzbashev TV; Yuzbasheva EY; Melkina OE; Patel D; Bubnov D; Dietz H; Ledesma-Amaro R Commun Biol; 2023 Aug; 6(1):858. PubMed ID: 37596335 [TBL] [Abstract][Full Text] [Related]
18. Marker-free genomic editing in Saccharomyces cerevisiae using universal donor templates and multiplexing CRISPR-CAS9. Grissom JH; Moody SE; Chi RJ Yeast; 2024 Sep; 41(9):568-579. PubMed ID: 39180232 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9-RNA interference system for combinatorial metabolic engineering of Saccharomyces cerevisiae. Kildegaard KR; Tramontin LRR; Chekina K; Li M; Goedecke TJ; Kristensen M; Borodina I Yeast; 2019 May; 36(5):237-247. PubMed ID: 30953378 [TBL] [Abstract][Full Text] [Related]