These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29170980)

  • 1. From electromyographic activity to frequency modulation in zebra finch song.
    Döppler JF; Bush A; Goller F; Mindlin GB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):209-217. PubMed ID: 29170980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gating related activity in a syringeal muscle allows the reconstruction of zebra finches songs.
    Döppler JF; Bush A; Amador A; Goller F; Mindlin GB
    Chaos; 2018 Jul; 28(7):075517. PubMed ID: 30070497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.
    Mencio C; Kuberan B; Goller F
    J Neurophysiol; 2017 Feb; 117(2):637-645. PubMed ID: 27852738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smooth operator: avoidance of subharmonic bifurcations through mechanical mechanisms simplifies song motor control in adult zebra finches.
    Elemans CP; Laje R; Mindlin GB; Goller F
    J Neurosci; 2010 Oct; 30(40):13246-53. PubMed ID: 20926650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic reconstruction of physiological gestures used in a model of birdsong production.
    Boari S; Perl YS; Amador A; Margoliash D; Mindlin GB
    J Neurophysiol; 2015 Nov; 114(5):2912-22. PubMed ID: 26378204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional bilateral muscle control of vocal output in the songbird syrinx.
    Méndez JM; Goller F
    J Neurophysiol; 2020 Dec; 124(6):1857-1874. PubMed ID: 33026896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of physiological instructions from Zebra finch song.
    Perl YS; Arneodo EM; Amador A; Goller F; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051909. PubMed ID: 22181446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically driven avian vocal synthesizer.
    Sitt JD; Arneodo EM; Goller F; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031927. PubMed ID: 20365790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.
    Arneodo EM; Perl YS; Goller F; Mindlin GB
    PLoS Comput Biol; 2012; 8(6):e1002546. PubMed ID: 22761555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syringeal EMGs and synthetic stimuli reveal a switch-like activation of the songbird's vocal motor program.
    Bush A; Döppler JF; Goller F; Mindlin GB
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8436-8441. PubMed ID: 30068604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx.
    Düring DN; Knörlein BJ; Elemans CPH
    Sci Rep; 2017 Sep; 7(1):11296. PubMed ID: 28900151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles.
    Srivastava KH; Elemans CP; Sober SJ
    J Neurosci; 2015 Oct; 35(42):14183-94. PubMed ID: 26490859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird.
    Fee MS; Shraiman B; Pesaran B; Mitra PP
    Nature; 1998 Sep; 395(6697):67-71. PubMed ID: 12071206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond harmonic sounds in a simple model for birdsong production.
    Amador A; Mindlin GB
    Chaos; 2008 Dec; 18(4):043123. PubMed ID: 19123633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral motor dynamics of song production in the zebra finch.
    Goller F; Cooper BG
    Ann N Y Acad Sci; 2004 Jun; 1016():130-52. PubMed ID: 15313773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beak gape dynamics during song in the zebra finch.
    Goller F; Mallinckrodt MJ; Torti SD
    J Neurobiol; 2004 Jun; 59(3):289-303. PubMed ID: 15146546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Difference between the vocalizations of two sister species of pigeons explained in dynamical terms.
    Alonso RG; Kopuchian C; Amador A; Suarez Mde L; Tubaro PL; Mindlin GB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 May; 202(5):361-70. PubMed ID: 27033354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch.
    Plummer EM; Goller F
    J Exp Biol; 2008 Jan; 211(Pt 1):66-78. PubMed ID: 18083734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of syringeal muscles in controlling the phonology of bird song.
    Goller F; Suthers RA
    J Neurophysiol; 1996 Jul; 76(1):287-300. PubMed ID: 8836225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension.
    Alonso R; Goller F; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032706. PubMed ID: 24730873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.