These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2917158)

  • 1. Phosphate transport protein of rat heart mitochondria: location of its SH-groups and exploration of their environment.
    Ligeti E; Fonyó A
    Biochim Biophys Acta; 1989 Feb; 973(2):170-5. PubMed ID: 2917158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of the sulphydryl groups of the mitochondrial phosphate carrier.
    Ligeti E; Fonyó A
    Eur J Biochem; 1984 Mar; 139(2):279-85. PubMed ID: 6698014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate carrier of liver mitochondria: the reaction of its SH groups with mersalyl, 5,5'-dithio-bis-nitrobenzoate, and N-ethylmaleimide and the modulation of reactivity by the energy state of the mitochondria.
    Fonyo A; Vignais PV
    J Bioenerg Biomembr; 1980 Aug; 12(3-4):137-49. PubMed ID: 7217038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial phosphate carrier. Functional role of its SH groups and interrelations within the carrier unit.
    Ligeti E; Fonyó A
    Eur J Biochem; 1987 Aug; 167(1):167-73. PubMed ID: 3622508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate transport and proteins with SH groups in rat liver mitochondria.
    Alziari S; Touraille S; Briand Y; Durand R
    Biochimie; 1979; 61(8):891-903. PubMed ID: 526469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition.
    Kowaltowski AJ; Vercesi AE; Castilho RF
    Biochim Biophys Acta; 1997 Feb; 1318(3):395-402. PubMed ID: 9048976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial phosphate transport. N-ethylmaleimide insensitivity correlates with absence of beef heart-like Cys42 from the Saccharomyces cerevisiae phosphate transport protein.
    Guérin B; Bukusoglu C; Rakotomanana F; Wohlrab H
    J Biol Chem; 1990 Nov; 265(32):19736-41. PubMed ID: 2246257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of the -SH groups of the mitochondrial phosphate carrier under native, solubilized and reconstituted conditions.
    Hüther FJ; Kadenbach B
    Eur J Biochem; 1984 Aug; 143(1):79-82. PubMed ID: 6468392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of phenylisothiocyanates with the mitochondrial phosphate carrier. I. Covalent modification and inhibition of phosphate transport.
    Genchi G; Petrone G; De Palma A; Cambria A; Palmieri F
    Biochim Biophys Acta; 1988 Dec; 936(3):413-20. PubMed ID: 3143411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate transport in rat liver mitochondria: location of sulfhydryl groups essential for transport activities.
    Wehrle JP; Pedersen PL
    J Bioenerg Biomembr; 1981 Dec; 13(5-6):285-94. PubMed ID: 7334021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pH on sulfhydryl groups and fluidity of the mitochondrial membrane.
    Zimmer G; Freisleben HJ; Fuchs J
    Arch Biochem Biophys; 1990 Nov; 282(2):307-17. PubMed ID: 2173480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of phosphate and ionophores on (14C)-NEM incorporation in mitochondrial membranes and relationships with phosphate carrier system.
    Briand Y; Debise R; Durand R
    Biochimie; 1975; 57(6-7):787-96. PubMed ID: 1203324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial carnitine carrier: characterization of SH-groups relevant for its transport function.
    Indiveri C; Tonazzi A; Dierks T; Krämer R; Palmieri F
    Biochim Biophys Acta; 1992 Nov; 1140(1):53-8. PubMed ID: 1420325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance and redox state of SH groups in pyruvate carrier isolated from bovine heart mitochondria.
    Nałecz KA; Müller M; Zambrowicz EB; Wojtczak L; Azzi A
    Biochim Biophys Acta; 1990 Apr; 1016(2):272-9. PubMed ID: 2317484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of some sulfhydryl reagents on the respiratory chain activity.
    Zanotti F; Marzulli D; Lofrumento NE
    Boll Soc Ital Biol Sper; 1985 Jan; 61(1):113-20. PubMed ID: 3977991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes.
    Azzone GF; Massari S; Pozzan T
    Biochim Biophys Acta; 1976 Jan; 423(1):15-26. PubMed ID: 1247603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate transport across the mitochondrial membrane: the influence of thiol oxidation and of Mg++ on inhibition by mercurials.
    Siliprandi D; Toninello A; Zoccarato F; Bindoli A
    FEBS Lett; 1975 Mar; 51(1):15-7. PubMed ID: 1123044
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphate transport in rat liver mitochondria. Membrane components labeled by N-ethylmaleimide during inhibition of transport.
    Coty WA; Pedersen PL
    J Biol Chem; 1975 May; 250(9):3515-21. PubMed ID: 1123352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of sulfhydryl reagents to investigate branched chain alpha-keto acid transport in mitochondria.
    Drown PM; Torres N; Tovar AR; Davoodi J; Hutson SM
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):273-84. PubMed ID: 11018671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the mitochondrial sulfonylurea receptor by thiol reagents.
    Szewczyk A; Wójcik G; Lobanov NA; Nalecz MJ
    Biochem Biophys Res Commun; 1999 Aug; 262(1):255-8. PubMed ID: 10448101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.