These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29171593)

  • 1. Corrigendum: Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy.
    Kros L; Lindeman S; Eelkman Rooda OHJ; Murugesan P; Bina L; Bosman LWJ; De Zeeuw CI; Hoebeek FE
    Front Cell Neurosci; 2017; 11():369. PubMed ID: 29171593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy.
    Kros L; Lindeman S; Eelkman Rooda OHJ; Murugesan P; Bina L; Bosman LWJ; De Zeeuw CI; Hoebeek FE
    Front Cell Neurosci; 2017; 11():346. PubMed ID: 29163057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purkinje cell rhythmicity and synchronicity during modulation of fast cerebellar oscillation.
    Servais L; Cheron G
    Neuroscience; 2005; 134(4):1247-59. PubMed ID: 16054763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential participation of some 'specific' and 'non-specific' thalamic nuclei in generalized spike and wave discharges of feline generalized penicillin epilepsy.
    McLachlan RS; Gloor P; Avoli M
    Brain Res; 1984 Jul; 307(1-2):277-87. PubMed ID: 6466997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebellar output controls generalized spike-and-wave discharge occurrence.
    Kros L; Eelkman Rooda OH; Spanke JK; Alva P; van Dongen MN; Karapatis A; Tolner EA; Strydis C; Davey N; Winkelman BH; Negrello M; Serdijn WA; Steuber V; van den Maagdenberg AM; De Zeeuw CI; Hoebeek FE
    Ann Neurol; 2015 Jun; 77(6):1027-49. PubMed ID: 25762286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberrant cerebellar Purkinje cell activity as the cause of motor attacks in a mouse model of episodic ataxia type 2.
    Tara E; Vitenzon A; Hess E; Khodakhah K
    Dis Model Mech; 2018 Sep; 11(9):. PubMed ID: 30279196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ovarian hormones and absence epilepsy: a long-term EEG study and pharmacological effects in a genetic absence epilepsy model.
    van Luijtelaar G; Budziszewska B; Jaworska-Feil L; Ellis J; Coenen A; Lasoń W
    Epilepsy Res; 2001 Sep; 46(3):225-39. PubMed ID: 11518624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tottering mouse: a critical review of its usefulness in the study of the neuronal mechanisms underlying epilepsy.
    Kostopoulos GK
    J Neural Transm Suppl; 1992; 35():21-36. PubMed ID: 1512593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats.
    Coenen AM; Drinkenburg WH; Inoue M; van Luijtelaar EL
    Epilepsy Res; 1992 Jul; 12(2):75-86. PubMed ID: 1396543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum.
    Eccles JC; Llinás R; Sasaki K
    J Physiol; 1966 Jan; 182(2):268-96. PubMed ID: 5944665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control.
    Ju C; Bosman LWJ; Hoogland TM; Velauthapillai A; Murugesan P; Warnaar P; van Genderen RM; Negrello M; De Zeeuw CI
    J Physiol; 2019 May; 597(9):2483-2514. PubMed ID: 30908629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral blood flow during spike-wave discharges.
    Sperling MR; Skolnick BE
    Epilepsia; 1995 Feb; 36(2):156-63. PubMed ID: 7821273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Purkinje cell activity increase induced by suppression of inferior olive activity.
    Savio T; Tempia F
    Exp Brain Res; 1985; 57(3):456-63. PubMed ID: 2984036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k.
    Servais L; Bearzatto B; Schwaller B; Dumont M; De Saedeleer C; Dan B; Barski JJ; Schiffmann SN; Cheron G
    Eur J Neurosci; 2005 Aug; 22(4):861-70. PubMed ID: 16115209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy.
    Seidenbecher T; Pape HC
    Eur J Neurosci; 2001 Apr; 13(8):1537-46. PubMed ID: 11328348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum.
    Sugihara I; Lang EJ; Llinás R
    J Physiol; 1993 Oct; 470():243-71. PubMed ID: 8308729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced G protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel-mutant mouse, tottering.
    Zhou YD; Turner TJ; Dunlap K
    J Physiol; 2003 Mar; 547(Pt 2):497-507. PubMed ID: 12562906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feline generalized penicillin epilepsy.
    Avoli M
    Ital J Neurol Sci; 1995; 16(1-2):79-82. PubMed ID: 7642356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering.
    Sawada K; Kalam Azad A; Sakata-Haga H; Lee NS; Jeong YG; Fukui Y
    Acta Neurobiol Exp (Wars); 2009; 69(1):138-45. PubMed ID: 19325647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.