These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29171963)

  • 1. Indium selenide monolayer: strain-enhanced optoelectronic response and dielectric environment-tunable 2D exciton features.
    Amara IB; Hichri A; Jaziri S
    J Phys Condens Matter; 2017 Dec; 29(50):505302. PubMed ID: 29171963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect to Direct Gap Crossover in Two-Dimensional InSe Revealed by Angle-Resolved Photoemission Spectroscopy.
    Hamer MJ; Zultak J; Tyurnina AV; Zólyomi V; Terry D; Barinov A; Garner A; Donoghue J; Rooney AP; Kandyba V; Giampietri A; Graham A; Teutsch N; Xia X; Koperski M; Haigh SJ; Fal'ko VI; Gorbachev RV; Wilson NR
    ACS Nano; 2019 Feb; 13(2):2136-2142. PubMed ID: 30676744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain induced new phase and indirect-direct band gap transition of monolayer InSe.
    Hu T; Zhou J; Dong J
    Phys Chem Chem Phys; 2017 Aug; 19(32):21722-21728. PubMed ID: 28776623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-Induced Bandgap Enhancement of InSe Ultrathin Films with Self-Formed Two-Dimensional Electron Gas.
    Zhang Z; Yuan Y; Zhou W; Chen C; Yuan S; Zeng H; Fu YS; Zhang W
    ACS Nano; 2021 Jun; 15(6):10700-10709. PubMed ID: 34080842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.
    Mudd GW; Molas MR; Chen X; Zólyomi V; Nogajewski K; Kudrynskyi ZR; Kovalyuk ZD; Yusa G; Makarovsky O; Eaves L; Potemski M; Fal'ko VI; Patanè A
    Sci Rep; 2016 Dec; 6():39619. PubMed ID: 28008964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicene and germanene on InSe substrates: structures and tunable electronic properties.
    Fan Y; Liu X; Wang J; Ai H; Zhao M
    Phys Chem Chem Phys; 2018 Apr; 20(16):11369-11377. PubMed ID: 29644364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of photoluminescence and hole mobility in 1- to 5-layer InSe due to the top valence-band inversion: strain effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Lu J
    Nanoscale; 2018 Jun; 10(24):11441-11451. PubMed ID: 29882944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Anisotropic Deformation and Near-Infrared Emission Tuning in Thin-Layered InSe Crystal under High Pressure.
    Zhao L; Jiang Y; Li C; Liang Y; Wei Z; Wei X; Zhang Q
    Nano Lett; 2023 Apr; 23(8):3493-3500. PubMed ID: 37023469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Linearly Polarized Light Emission by Coupling Out-of-Plane Exciton to Anisotropic Gap Plasmon Nanocavity.
    Xu K; Zou Z; Li W; Zhang L; Ge M; Wang T; Du W
    Nano Lett; 2024 Mar; 24(12):3647-3653. PubMed ID: 38488282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS
    Cunningham PD; Hanbicki AT; McCreary KM; Jonker BT
    ACS Nano; 2017 Dec; 11(12):12601-12608. PubMed ID: 29227085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Light Emission from the Ridge of Two-Dimensional InSe Flakes.
    Li Y; Wang T; Wang H; Li Z; Chen Y; West D; Sankar R; Ulaganathan RK; Chou F; Wetzel C; Xu CY; Zhang S; Shi SF
    Nano Lett; 2018 Aug; 18(8):5078-5084. PubMed ID: 30021441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric Field Controlled Indirect-Direct-Indirect Band Gap Transition in Monolayer InSe.
    Xiao XB; Ye Q; Liu ZF; Wu QP; Li Y; Ai GP
    Nanoscale Res Lett; 2019 Oct; 14(1):322. PubMed ID: 31617005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Dielectric Screening for Potential-well Arrays of Excitons in 2D Materials.
    Peimyoo N; Wu HY; Escolar J; De Sanctis A; Prando G; Vollmer F; Withers F; Riis-Jensen AC; Craciun MF; Thygesen KS; Russo S
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55134-55140. PubMed ID: 33232104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable electronic and optical properties of monolayer silicane under tensile strain: a many-body study.
    Shu H; Wang S; Li Y; Yip J; Wang J
    J Chem Phys; 2014 Aug; 141(6):064707. PubMed ID: 25134590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric field and uniaxial strain tunable electronic properties of the InSb/InSe heterostructure.
    Wang Z; Sun F; Liu J; Tian Y; Zhang Z; Zhang Y; Wei X; Guo T; Fan J; Ni L; Duan L
    Phys Chem Chem Phys; 2020 Sep; 22(36):20712-20720. PubMed ID: 32901624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many-Body Effect and Device Performance Limit of Monolayer InSe.
    Wang Y; Fei R; Quhe R; Li J; Zhang H; Zhang X; Shi B; Xiao L; Song Z; Yang J; Shi J; Pan F; Lu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23344-23352. PubMed ID: 29916240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain.
    Yang G; Sun R; Gu Y; Xie F; Ding Y; Zhang X; Wang Y; Hua B; Ni X; Fan Q; Gu X
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31795272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Dielectric Impact of Layer Distances on Exciton and Trion Binding Energies in van der Waals Heterostructures.
    Florian M; Hartmann M; Steinhoff A; Klein J; Holleitner AW; Finley JJ; Wehling TO; Kaniber M; Gies C
    Nano Lett; 2018 Apr; 18(4):2725-2732. PubMed ID: 29558797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Near-Infrared Light Emission in Mechanically Exfoliated InSe Platelets through Hydrostatic Pressure for Multicolor Microlasing.
    Zhao L; Liang Y; Cai X; Du J; Wang X; Liu X; Wang M; Wei Z; Zhang J; Zhang Q
    Nano Lett; 2022 May; 22(9):3840-3847. PubMed ID: 35500126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.