These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 29172034)
21. Group X secretory phospholipase A2 negatively regulates ABCA1 and ABCG1 expression and cholesterol efflux in macrophages. Shridas P; Bailey WM; Gizard F; Oslund RC; Gelb MH; Bruemmer D; Webb NR Arterioscler Thromb Vasc Biol; 2010 Oct; 30(10):2014-21. PubMed ID: 20844270 [TBL] [Abstract][Full Text] [Related]
22. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Naik SU; Wang X; Da Silva JS; Jaye M; Macphee CH; Reilly MP; Billheimer JT; Rothblat GH; Rader DJ Circulation; 2006 Jan; 113(1):90-7. PubMed ID: 16365197 [TBL] [Abstract][Full Text] [Related]
23. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Ramírez CM; Rotllan N; Vlassov AV; Dávalos A; Li M; Goedeke L; Aranda JF; Cirera-Salinas D; Araldi E; Salerno A; Wanschel A; Zavadil J; Castrillo A; Kim J; Suárez Y; Fernández-Hernando C Circ Res; 2013 Jun; 112(12):1592-601. PubMed ID: 23519695 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of protein arginine methyltransferase 3 activity selectively impairs liver X receptor-driven transcription of hepatic lipogenic genes in vivo. Nahon JE; Groeneveldt C; Geerling JJ; van Eck M; Hoekstra M Br J Pharmacol; 2018 Aug; 175(15):3175-3183. PubMed ID: 29774529 [TBL] [Abstract][Full Text] [Related]
25. Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice. Out R; Hoekstra M; Hildebrand RB; Kruit JK; Meurs I; Li Z; Kuipers F; Van Berkel TJ; Van Eck M Arterioscler Thromb Vasc Biol; 2006 Oct; 26(10):2295-300. PubMed ID: 16857950 [TBL] [Abstract][Full Text] [Related]
26. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Gabunia K; Ellison S; Kelemen S; Kako F; Cornwell WD; Rogers TJ; Datta PK; Ouimet M; Moore KJ; Autieri MV Am J Pathol; 2016 May; 186(5):1361-74. PubMed ID: 26952642 [TBL] [Abstract][Full Text] [Related]
27. Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. Zhang J; Nie S; Zu Y; Abbasi M; Cao J; Li C; Wu D; Labib S; Brackee G; Shen CL; Wang S J Control Release; 2019 Jun; 303():263-273. PubMed ID: 30999008 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of liver x receptor/retinoid X receptor-mediated transcription contributes to the proatherogenic effects of arsenic in macrophages in vitro. Padovani AM; Molina MF; Mann KK Arterioscler Thromb Vasc Biol; 2010 Jun; 30(6):1228-36. PubMed ID: 20339114 [TBL] [Abstract][Full Text] [Related]
29. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Wang N; Ranalletta M; Matsuura F; Peng F; Tall AR Arterioscler Thromb Vasc Biol; 2006 Jun; 26(6):1310-6. PubMed ID: 16556852 [TBL] [Abstract][Full Text] [Related]
30. Liver X receptor: a potential target in the treatment of atherosclerosis. Savla SR; Prabhavalkar KS; Bhatt LK Expert Opin Ther Targets; 2022 Jul; 26(7):645-658. PubMed ID: 36003057 [TBL] [Abstract][Full Text] [Related]
31. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages. Hong YF; Kim H; Kim HS; Park WJ; Kim JY; Chung DK PLoS One; 2016; 11(4):e0154302. PubMed ID: 27120199 [TBL] [Abstract][Full Text] [Related]
32. Activation of liver X receptor induces macrophage interleukin-5 expression. Chen Y; Duan Y; Kang Y; Yang X; Jiang M; Zhang L; Li G; Yin Z; Hu W; Dong P; Li X; Hajjar DP; Han J J Biol Chem; 2012 Dec; 287(52):43340-50. PubMed ID: 23150660 [TBL] [Abstract][Full Text] [Related]
33. Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor. Kim GH; Oh GS; Yoon J; Lee GG; Lee KU; Kim SW J Clin Invest; 2015 Jan; 125(1):183-93. PubMed ID: 25437875 [TBL] [Abstract][Full Text] [Related]
34. PSRC1 overexpression attenuates atherosclerosis progression in apoE Guo K; Hu L; Xi D; Zhao J; Liu J; Luo T; Ma Y; Lai W; Guo Z J Mol Cell Cardiol; 2018 Mar; 116():69-80. PubMed ID: 29378206 [TBL] [Abstract][Full Text] [Related]
35. TTC39B deficiency stabilizes LXR reducing both atherosclerosis and steatohepatitis. Hsieh J; Koseki M; Molusky MM; Yakushiji E; Ichi I; Westerterp M; Iqbal J; Chan RB; Abramowicz S; Tascau L; Takiguchi S; Yamashita S; Welch CL; Di Paolo G; Hussain MM; Lefkowitch JH; Rader DJ; Tall AR Nature; 2016 Jul; 535(7611):303-7. PubMed ID: 27383786 [TBL] [Abstract][Full Text] [Related]
36. Characterization of ASC-2 as an antiatherogenic transcriptional coactivator of liver X receptors in macrophages. Kim GH; Park K; Yeom SY; Lee KJ; Kim G; Ko J; Rhee DK; Kim YH; Lee HK; Kim HW; Oh GT; Lee KU; Lee JW; Kim SW Mol Endocrinol; 2009 Jul; 23(7):966-74. PubMed ID: 19342446 [TBL] [Abstract][Full Text] [Related]
37. Complement Receptor Targeted Liposomes Encapsulating the Liver X Receptor Agonist GW3965 Accumulate in and Stabilize Atherosclerotic Plaques. Benne N; Martins Cardoso R; Boyle AL; Kros A; Jiskoot W; Kuiper J; Bouwstra J; Van Eck M; Slütter B Adv Healthc Mater; 2020 May; 9(10):e2000043. PubMed ID: 32329226 [TBL] [Abstract][Full Text] [Related]
38. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. Terasaka N; Hiroshima A; Koieyama T; Ubukata N; Morikawa Y; Nakai D; Inaba T FEBS Lett; 2003 Feb; 536(1-3):6-11. PubMed ID: 12586329 [TBL] [Abstract][Full Text] [Related]
39. DNA topoisomerase II inhibitors induce macrophage ABCA1 expression and cholesterol efflux-an LXR-dependent mechanism. Zhang L; Jiang M; Shui Y; Chen Y; Wang Q; Hu W; Ma X; Li X; Liu X; Cao X; Liu M; Duan Y; Han J Biochim Biophys Acta; 2013 Jun; 1831(6):1134-45. PubMed ID: 23466610 [TBL] [Abstract][Full Text] [Related]
40. Elimination of macrophages drives LXR-induced regression both in initial and advanced stages of atherosclerotic lesion development. van der Stoep M; Li Z; Calpe-Berdiel L; van der Sluis RJ; Saleh P; McKinnon HJ; Smit MJ; Korporaal SJ; Van Berkel TJ; Van Eck M; Hoekstra M Biochem Pharmacol; 2013 Dec; 86(11):1594-602. PubMed ID: 24095721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]