BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29172104)

  • 1. Evaluation of metabolic changes in oxalate-rich plant Rumex obtusifolius L. caused by ion beam irradiation.
    Miyagi A; Kitano S; Oono Y; Hase Y; Narumi I; Yamaguchi M; Uchimiya H; Kawai-Yamada M
    Plant Physiol Biochem; 2018 Jan; 122():40-45. PubMed ID: 29172104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.
    Vondráčková S; Száková J; Drábek O; Tejnecký V; Hejcman M; Müllerová V; Tlustoš P
    PLoS One; 2015; 10(4):e0123351. PubMed ID: 25880431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolome analysis of rice leaves to obtain low-oxalate strain from ion beam-mutagenised population.
    Miyagi A; Saimaru T; Harigai N; Oono Y; Hase Y; Kawai-Yamada M
    Metabolomics; 2020 Sep; 16(9):94. PubMed ID: 32894362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon (δ
    Hussain MI; Reigosa MJ; Muscolo A
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30257436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of raw nepodin extraction from Rumex japonicus and R. obtusifolius and their DNA polymorphisms.
    Minami M; Mori T; Yonezawa T; Saito Y; Teruya T; Woo JT
    J Nat Med; 2018 Jan; 72(1):369-374. PubMed ID: 29063361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of glucosylceramides in the Polygonaceae, Rumex obtusifolius L. injurious weed.
    Watanabe M; Miyagi A; Nagano M; Kawai-Yamada M; Imai H
    Biosci Biotechnol Biochem; 2011; 75(5):877-81. PubMed ID: 21597180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Effects of Rumex obtusifolius Seed and Leaf Extracts Against Acanthamoeba: An in vitro Study.
    Nayeri T; Bineshian F; Khoshzaban F; Asl AD; Ghaffarifar F
    Infect Disord Drug Targets; 2021; 21(2):211-219. PubMed ID: 32321413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-Candida and antioxidant activities of hydroalcohlic extract of Rumex obtusifolius leaves.
    Bineshian F; Bakhshandeh N; Freidounian M; Nazari H
    Pak J Pharm Sci; 2019 May; 32(3):919-926. PubMed ID: 31278700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of indirect plant-plant interaction via root exudate on growth and leaf chemical contents in
    Ohsaki H; Yamawo A
    Plant Signal Behav; 2022 Dec; 17(1):2050628. PubMed ID: 35318884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of Phenolic Compound Accumulation and Antioxidant Activity in Wild Plants of Some
    Feduraev P; Skrypnik L; Nebreeva S; Dzhobadze G; Vatagina A; Kalinina E; Pungin A; Maslennikov P; Riabova A; Krol O; Chupakhina G
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the soil seed bank of Rumex obtusifolius in productive grasslands be explained by management and soil properties?
    Suter M; Klötzli J; Beaumont D; Kolmanič A; Leskovšek R; Schaffner U; Storkey J; Lüscher A
    PLoS One; 2023; 18(6):e0286760. PubMed ID: 37267389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effects of grass competition and insect herbivory on the weed Rumex obtusifolius in an inundative biocontrol approach.
    Klötzli J; Suter M; Schaffner U; Müller-Schärer H; Lüscher A
    Sci Rep; 2023 Oct; 13(1):18508. PubMed ID: 37898617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius in a mountain tourist destination.
    Takahashi K; Hanyu M
    Sci Rep; 2015 Sep; 5():13898. PubMed ID: 26354180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the Above and Below-Ground Chemical Defences of Three Rumex Species Between Their Native and Introduced Provenances.
    Costan CA; Godsoe W; Bufford JL; Hulme PE
    J Chem Ecol; 2023 Jun; 49(5-6):276-286. PubMed ID: 37121960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate content and nitrate reductase activity in Rumex obtusifolius L. : II. Responses to nitrate starvation and nitrogen fertilization.
    Melzer A; Gebauer G; Rehder H
    Oecologia; 1984 Aug; 63(3):380-385. PubMed ID: 28311215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of chrysomelid beetle grazing and plant competition on the growth of Rumex obtusifolius.
    Cottam DA; Whittaker JB; Malloch AJ
    Oecologia; 1986 Oct; 70(3):452-456. PubMed ID: 28311935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical Activity and Hypoglycemic Effects of
    Aghajanyan A; Nikoyan A; Trchounian A
    Biomed Res Int; 2018; 2018():4526352. PubMed ID: 30533432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evidence for natural hybridization between Rumex crispus and R. obtusifolius (Polygonaceae) in Korea.
    Bhandari GS; Park CW
    Sci Rep; 2022 Mar; 12(1):5423. PubMed ID: 35361815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxalate synthesis in leaves is associated with root uptake of nitrate and its assimilation in spinach (Spinacia oleracea L.) plants.
    Liu XX; Zhou K; Hu Y; Jin R; Lu LL; Jin CW; Lin XY
    J Sci Food Agric; 2015 Aug; 95(10):2105-16. PubMed ID: 25243598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate content and nitrate reductase activity in Rumex obtusifolius L. : I. Differences in organs and diurnal changes.
    Gebauer G; Melzer A; Rehder H
    Oecologia; 1984 Jul; 63(1):136-142. PubMed ID: 28311176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.