These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29172145)

  • 1. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform.
    Agarwala S; Lee JM; Ng WL; Layani M; Yeong WY; Magdassi S
    Biosens Bioelectron; 2018 Apr; 102():365-371. PubMed ID: 29172145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy.
    Tan YJ; Tan X; Yeong WY; Tor SB
    Sci Rep; 2016 Dec; 6():39140. PubMed ID: 27966623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.
    Ng WL; Goh MH; Yeong WY; Naing MW
    Biomater Sci; 2018 Feb; 6(3):562-574. PubMed ID: 29383354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting.
    Dubbin K; Hori Y; Lewis KK; Heilshorn SC
    Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioink properties before, during and after 3D bioprinting.
    Hölzl K; Lin S; Tytgat L; Van Vlierberghe S; Gu L; Ovsianikov A
    Biofabrication; 2016 Sep; 8(3):032002. PubMed ID: 27658612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D bioprinted complex structure for engineering the muscle-tendon unit.
    Merceron TK; Burt M; Seol YJ; Kang HW; Lee SJ; Yoo JJ; Atala A
    Biofabrication; 2015 Jun; 7(3):035003. PubMed ID: 26081669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands.
    Mistry P; Aied A; Alexander M; Shakesheff K; Bennett A; Yang J
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28160431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a bioprinting approach for automated manufacturing of multi-cell type biocomposite TRACER strips using contact capillary-wicking.
    Li NT; Rodenhizer D; Mou J; Shahaj A; Samardzic K; McGuigan AP
    Biofabrication; 2019 Oct; 12(1):015001. PubMed ID: 31553953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brief review of extrusion-based tissue scaffold bio-printing.
    Ning L; Chen X
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28544779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cross-linking on the dimensional stability and biocompatibility of a tailored 3D-bioprinted gelatin scaffold.
    Choi DJ; Kho Y; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Biol Macromol; 2019 Aug; 135():659-667. PubMed ID: 31150670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedded Multimaterial Extrusion Bioprinting.
    Rocca M; Fragasso A; Liu W; Heinrich MA; Zhang YS
    SLAS Technol; 2018 Apr; 23(2):154-163. PubMed ID: 29132232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering muscle cell alignment through 3D bioprinting.
    Mozetic P; Giannitelli SM; Gori M; Trombetta M; Rainer A
    J Biomed Mater Res A; 2017 Sep; 105(9):2582-2588. PubMed ID: 28544472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ.
    Olubamiji AD; Zhu N; Chang T; Nwankwo CK; Izadifar Z; Honaramooz A; Chen X; Eames BF
    Tissue Eng Part C Methods; 2017 Mar; 23(3):156-168. PubMed ID: 28106517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process.
    Kim YB; Lee H; Kim GH
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32230-32240. PubMed ID: 27933843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery.
    Gao Q; He Y; Fu JZ; Liu A; Ma L
    Biomaterials; 2015 Aug; 61():203-15. PubMed ID: 26004235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.