BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29172233)

  • 1. Stronger selective constraint on downstream genes in the oxidative phosphorylation pathway of cetaceans.
    Tian R; Xu S; Chai S; Yin D; Zakon H; Yang G
    J Evol Biol; 2018 Feb; 31(2):217-228. PubMed ID: 29172233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans.
    Shen T; Xu S; Wang X; Yu W; Zhou K; Yang G
    BMC Evol Biol; 2012 Mar; 12():39. PubMed ID: 22443485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds.
    Selleghin-Veiga G; Magpali L; Picorelli A; Silva FA; Ramos E; Nery MF
    J Mol Evol; 2024 Jun; 92(3):300-316. PubMed ID: 38735005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans.
    Tian R; Seim I; Zhang Z; Yang Y; Ren W; Xu S; Yang G
    Genes Genomics; 2019 Dec; 41(12):1417-1430. PubMed ID: 31535317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial-nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes?
    Zhang F; Broughton RE
    Genome Biol Evol; 2013; 5(10):1781-91. PubMed ID: 23995460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signature of positive selection in mitochondrial DNA in Cetartiodactyla.
    Mori S; Matsunami M
    Genes Genet Syst; 2018 Sep; 93(2):65-73. PubMed ID: 29643269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Oxidative Phosphorylation (OXPHOS) Genes Reflecting the Evolutionary and Life Histories of Fig Wasps (Hymenoptera, Chalcidoidea).
    Zhou Y; Huang D; Xin Z; Xiao J
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33203150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated evolution and diversifying selection drove the adaptation of cetacean bone microstructure.
    Sun D; Zhou X; Yu Z; Xu S; Seim I; Yang G
    BMC Evol Biol; 2019 Oct; 19(1):194. PubMed ID: 31651232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera.
    Li Y; Zhang R; Liu S; Donath A; Peters RS; Ware J; Misof B; Niehuis O; Pfrender ME; Zhou X
    BMC Evol Biol; 2017 Dec; 17(1):269. PubMed ID: 29281964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic signatures of lipid metabolism evolution in Cetacea since the divergence from terrestrial ancestor.
    Endo Y; Kamei KI; Inoue-Murayama M
    J Evol Biol; 2018 Nov; 31(11):1655-1665. PubMed ID: 30074670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving.
    Tian R; Wang Z; Niu X; Zhou K; Xu S; Yang G
    Genome Biol Evol; 2016 Feb; 8(3):827-39. PubMed ID: 26912402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into body size variation in cetaceans from the evolution of body-size-related genes.
    Sun Y; Liu Y; Sun X; Lin Y; Yin D; Xu S; Yang G
    BMC Evol Biol; 2019 Jul; 19(1):157. PubMed ID: 31351448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans.
    São Pedro SL; Alves JM; Barreto AS; Lima AO
    PLoS One; 2015; 10(7):e0134516. PubMed ID: 26226365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical evolution and molecular adaptation of the cetacean and artiodactyl cytochrome b proteins.
    McClellan DA; Palfreyman EJ; Smith MJ; Moss JL; Christensen RG; Sailsbery JK
    Mol Biol Evol; 2005 Mar; 22(3):437-55. PubMed ID: 15509727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of mitochondrial coding genes in the oxidative phosphorylation pathway in malacostraca: purifying selection or accelerated evolution?
    Zhang D; Ding G; Ge B; Zhang H; Tang B
    Mitochondrial DNA A DNA Mapp Seq Anal; 2017 Jul; 28(4):593-596. PubMed ID: 27159701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread positive selection on cetacean TLR extracellular domain.
    Xu S; Tian R; Lin Y; Yu Z; Zhang Z; Niu X; Wang X; Yang G
    Mol Immunol; 2019 Feb; 106():135-142. PubMed ID: 30597475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive evolution of the osmoregulation-related genes in cetaceans during secondary aquatic adaptation.
    Xu S; Yang Y; Zhou X; Xu J; Zhou K; Yang G
    BMC Evol Biol; 2013 Sep; 13():189. PubMed ID: 24015756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'Obesity' is healthy for cetaceans? Evidence from pervasive positive selection in genes related to triacylglycerol metabolism.
    Wang Z; Chen Z; Xu S; Ren W; Zhou K; Yang G
    Sci Rep; 2015 Sep; 5():14187. PubMed ID: 26381091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous natural selection on oxidative phosphorylation genes among fishes with extreme high and low aerobic performance.
    Zhang F; Broughton RE
    BMC Evol Biol; 2015 Aug; 15():173. PubMed ID: 26306407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to Make a Dolphin: Molecular Signature of Positive Selection in Cetacean Genome.
    Nery MF; González DJ; Opazo JC
    PLoS One; 2013; 8(6):e65491. PubMed ID: 23840335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.