BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 29172454)

  • 1. The Role of Electron Transfer Dissociation in Modern Proteomics.
    Riley NM; Coon JJ
    Anal Chem; 2018 Jan; 90(1):40-64. PubMed ID: 29172454
    [No Abstract]   [Full Text] [Related]  

  • 2. Capillary Zone Electrophoresis-Tandem Mass Spectrometry with Activated Ion Electron Transfer Dissociation for Large-scale Top-down Proteomics.
    McCool EN; Lodge JM; Basharat AR; Liu X; Coon JJ; Sun L
    J Am Soc Mass Spectrom; 2019 Dec; 30(12):2470-2479. PubMed ID: 31073891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated Ion-Electron Transfer Dissociation Enables Comprehensive Top-Down Protein Fragmentation.
    Riley NM; Westphall MS; Coon JJ
    J Proteome Res; 2017 Jul; 16(7):2653-2659. PubMed ID: 28608681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical analysis of Peptide electron transfer dissociation fragmentation mass spectrometry.
    Chalkley RJ; Medzihradszky KF; Lynn AJ; Baker PR; Burlingame AL
    Anal Chem; 2010 Jan; 82(2):579-84. PubMed ID: 20028093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Value of Activated Ion Electron Transfer Dissociation for High-Throughput Top-Down Characterization of Intact Proteins.
    Riley NM; Sikora JW; Seckler HS; Greer JB; Fellers RT; LeDuc RD; Westphall MS; Thomas PM; Kelleher NL; Coon JJ
    Anal Chem; 2018 Jul; 90(14):8553-8560. PubMed ID: 29924586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Parallel Reaction Monitoring with Electron Transfer Dissociation for Middle-Down Proteomics: An Application to Study the Quantitative Changes Induced by Histone Modifying Enzyme Inhibitors and Activators.
    Sweredoski MJ; Moradian A; Hess S
    Methods Mol Biol; 2017; 1647():61-69. PubMed ID: 28808995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments and applications of electron transfer dissociation mass spectrometry in proteomics.
    Sarbu M; Ghiulai RM; Zamfir AD
    Amino Acids; 2014 Jul; 46(7):1625-34. PubMed ID: 24687149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative electron transfer dissociation of deprotonated phosphopeptide anions: choice of radical cation reagent and competition between electron and proton transfer.
    Huzarska M; Ugalde I; Kaplan DA; Hartmer R; Easterling ML; Polfer NC
    Anal Chem; 2010 Apr; 82(7):2873-8. PubMed ID: 20210298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Protocol for top-down proteomics using HPLC and ETD/PTR-MS.
    Hart SR
    Methods Mol Biol; 2010; 658():339-53. PubMed ID: 20839115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycan size and attachment site location affect electron transfer dissociation (ETD) fragmentation and automated glycopeptide identification.
    Alagesan K; Hinneburg H; Seeberger PH; Silva DV; Kolarich D
    Glycoconj J; 2019 Dec; 36(6):487-493. PubMed ID: 31637569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radical conversion and migration in electron capture dissociation.
    Moore BN; Ly T; Julian RR
    J Am Chem Soc; 2011 May; 133(18):6997-7006. PubMed ID: 21495634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance characteristics of electron transfer dissociation mass spectrometry.
    Good DM; Wirtala M; McAlister GC; Coon JJ
    Mol Cell Proteomics; 2007 Nov; 6(11):1942-51. PubMed ID: 17673454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation techniques in mass spectrometry-based proteomics.
    Jones AW; Cooper HJ
    Analyst; 2011 Sep; 136(17):3419-29. PubMed ID: 21698312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Electron Transfer Chains Primed by Proteomics.
    Wessels HJ; de Almeida NM; Kartal B; Keltjens JT
    Adv Microb Physiol; 2016; 68():219-352. PubMed ID: 27134025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer.
    Yu L; Yuan Y; Rensing C; Zhou S
    Biosens Bioelectron; 2018 May; 106():21-28. PubMed ID: 29414084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution parallel reaction monitoring with electron transfer dissociation for middle-down proteomics.
    Sweredoski MJ; Moradian A; Raedle M; Franco C; Hess S
    Anal Chem; 2015 Aug; 87(16):8360-6. PubMed ID: 26176279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced electron transfer dissociation through fixed charge derivatization of cysteines.
    Vasicek L; Brodbelt JS
    Anal Chem; 2009 Oct; 81(19):7876-84. PubMed ID: 19722535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping protein surface accessibility via an electron transfer dissociation selectively cleavable hydrazone probe.
    Vasicek L; O'Brien JP; Browning KS; Tao Z; Liu HW; Brodbelt JS
    Mol Cell Proteomics; 2012 Jul; 11(7):O111.015826. PubMed ID: 22393264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Key Role of Metal Adducts in the Differentiation of Phosphopeptide from Sulfopeptide Sequences by High-Resolution Mass Spectrometry.
    Piovesana S; Capriotti AL; Cavaliere C; Cerrato A; Montone CM; Zenezini Chiozzi R; Laganà A
    Anal Chem; 2022 Jul; 94(26):9234-9241. PubMed ID: 35714062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Front-end electron transfer dissociation: a new ionization source.
    Earley L; Anderson LC; Bai DL; Mullen C; Syka JE; English AM; Dunyach JJ; Stafford GC; Shabanowitz J; Hunt DF; Compton PD
    Anal Chem; 2013 Sep; 85(17):8385-90. PubMed ID: 23909443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.