These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 29172454)

  • 21. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation.
    Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S
    Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize (
    Zheng B; Zhao W; Ren T; Zhang X; Ning T; Liu P; Li G
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation.
    Collins MO; Wright JC; Jones M; Rayner JC; Choudhary JS
    J Proteomics; 2014 May; 103(100):1-14. PubMed ID: 24657495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X)
    Tsiatsiani L; Giansanti P; Scheltema RA; van den Toorn H; Overall CM; Altelaar AF; Heck AJ
    J Proteome Res; 2017 Feb; 16(2):852-861. PubMed ID: 28111955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the identification rate of endogenous peptides using electron transfer dissociation and collision-induced dissociation.
    Hayakawa E; Menschaert G; De Bock PJ; Luyten W; Gevaert K; Baggerman G; Schoofs L
    J Proteome Res; 2013 Dec; 12(12):5410-21. PubMed ID: 24032530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revealing the dynamics of the 20 S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach.
    Lu H; Zong C; Wang Y; Young GW; Deng N; Souda P; Li X; Whitelegge J; Drews O; Yang PY; Ping P
    Mol Cell Proteomics; 2008 Nov; 7(11):2073-89. PubMed ID: 18579562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collisions or electrons? Protein sequence analysis in the 21st century.
    Coon JJ
    Anal Chem; 2009 May; 81(9):3208-15. PubMed ID: 19364119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enrichment and analysis of nonenzymatically glycated peptides: boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry.
    Zhang Q; Tang N; Brock JW; Mottaz HM; Ames JM; Baynes JW; Smith RD; Metz TO
    J Proteome Res; 2007 Jun; 6(6):2323-30. PubMed ID: 17488106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1.
    Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL
    Bioelectrochemistry; 2018 Feb; 119():172-179. PubMed ID: 29032328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LEPA: from proteomics to energy conversion.
    Cortes-Salazar F; Gassner AL; Méndez MA; Pourhaghighi MR; Qiao L; Girault HH
    Chimia (Aarau); 2011; 65(9):672-6. PubMed ID: 22026177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?
    Hari Y; Leumann CJ; Schürch S
    J Am Soc Mass Spectrom; 2017 Dec; 28(12):2677-2685. PubMed ID: 28932996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precursor charge state prediction for electron transfer dissociation tandem mass spectra.
    Sharma V; Eng JK; Feldman S; von Haller PD; MacCoss MJ; Noble WS
    J Proteome Res; 2010 Oct; 9(10):5438-44. PubMed ID: 20731383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deciphering the electric code of Geobacter sulfurreducens in cocultures with Pseudomonas aeruginosa via SWATH-MS proteomics.
    Semenec L; Laloo AE; Schulz BL; Vergara IA; Bond PL; Franks AE
    Bioelectrochemistry; 2018 Feb; 119():150-160. PubMed ID: 28992596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated proteomics of E. coli via top-down electron-transfer dissociation mass spectrometry.
    Bunger MK; Cargile BJ; Ngunjiri A; Bundy JL; Stephenson JL
    Anal Chem; 2008 Mar; 80(5):1459-67. PubMed ID: 18229893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides.
    Yang F; Wu S; Stenoien DL; Zhao R; Monroe ME; Gritsenko MA; Purvine SO; Polpitiya AD; Tolić N; Zhang Q; Norbeck AD; Orton DJ; Moore RJ; Tang K; Anderson GA; Pasa-Tolić L; Camp DG; Smith RD
    Anal Chem; 2009 May; 81(10):4137-43. PubMed ID: 19371082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39.
    Lanzilotta WN; Fisher K; Seefeldt LC
    J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra.
    Sun RX; Dong MQ; Song CQ; Chi H; Yang B; Xiu LY; Tao L; Jing ZY; Liu C; Wang LH; Fu Y; He SM
    J Proteome Res; 2010 Dec; 9(12):6354-67. PubMed ID: 20883037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New prospects for proteomics--electron-capture (ECD) and electron-transfer dissociation (ETD) fragmentation techniques and combined fractional diagonal chromatography (COFRADIC).
    Appella E; Anderson CW
    FEBS J; 2007 Dec; 274(24):6255. PubMed ID: 18021241
    [No Abstract]   [Full Text] [Related]  

  • 39. Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy.
    Martens J; Grzetic J; Berden G; Oomens J
    Nat Commun; 2016 Jun; 7():11754. PubMed ID: 27277826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial proteomics profile points oxidative phosphorylation as main target for beauvericin and enniatin B mixture.
    Alonso-Garrido M; Manyes L; Pralea IE; Iuga CA
    Food Chem Toxicol; 2020 Jul; 141():111432. PubMed ID: 32407736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.