BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29172457)

  • 1. Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device.
    Zhou Y; Yang D; Zhou Y; Khoo BL; Han J; Ai Y
    Anal Chem; 2018 Jan; 90(1):912-919. PubMed ID: 29172457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry.
    Han Z; Chen L; Zhang S; Wang J; Duan X
    Anal Chem; 2020 Nov; 92(21):14568-14575. PubMed ID: 32911928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device.
    Zhou Y; Basu S; Laue E; Seshia AA
    Biosens Bioelectron; 2016 Jul; 81():249-258. PubMed ID: 26963790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic monitoring of single cell lysis in an impedance-based microfluidic device.
    Zhou Y; Basu S; Laue ED; Seshia AA
    Biomed Microdevices; 2016 Aug; 18(4):56. PubMed ID: 27299468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing deformability and surface friction of cancer cells.
    Byun S; Son S; Amodei D; Cermak N; Shaw J; Kang JH; Hecht VC; Winslow MM; Jacks T; Mallick P; Manalis SR
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7580-5. PubMed ID: 23610435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-Free Multivariate Biophysical Phenotyping-Activated Acoustic Sorting at the Single-Cell Level.
    Li P; Ai Y
    Anal Chem; 2021 Mar; 93(8):4108-4117. PubMed ID: 33599494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Mechanotyping of a Single Cell with Two Consecutive Constrictions of Different Sizes and an Electrical Detection System.
    Sano M; Kaji N; Rowat AC; Yasaki H; Shao L; Odaka H; Yasui T; Higashiyama T; Baba Y
    Anal Chem; 2019 Oct; 91(20):12890-12899. PubMed ID: 31442026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance-Enabled Camera-Free Intrinsic Mechanical Cytometry.
    Feng Y; Chai H; He W; Liang F; Cheng Z; Wang W
    Small Methods; 2022 Jul; 6(7):e2200325. PubMed ID: 35595712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry.
    Feng Y; Zhu J; Chai H; He W; Huang L; Wang W
    Small; 2023 Nov; 19(45):e2303416. PubMed ID: 37438542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocell-Based Optofluidic Device for Clogging-Free Cell Transit Time Measurements.
    Storti F; Bonfadini S; Bondelli G; Vurro V; Lanzani G; Criante L
    Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Cell Electrical Characterization Techniques.
    Mansor MA; Ahmad MR
    Int J Mol Sci; 2015 Jun; 16(6):12686-712. PubMed ID: 26053399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical phenotyping of cells via impedance spectroscopy in parallel cyclic deformability channels.
    Ren X; Ghassemi P; Strobl JS; Agah M
    Biomicrofluidics; 2019 Jul; 13(4):044103. PubMed ID: 31341524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free identification of activated T lymphocytes through tridimensional microsensors on chip.
    Rollo E; Tenaglia E; Genolet R; Bianchi E; Harari A; Coukos G; Guiducci C
    Biosens Bioelectron; 2017 Aug; 94():193-199. PubMed ID: 28284079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip refractive index cytometry for whole-cell deformability discrimination.
    Leblanc-Hotte A; Sen Nkwe N; Chabot-Roy G; Affar EB; Lesage S; Delisle JS; Peter YA
    Lab Chip; 2019 Jan; 19(3):464-474. PubMed ID: 30570636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells.
    Zhao Y; Wang K; Chen D; Fan B; Xu Y; Ye Y; Wang J; Chen J; Huang C
    Biosens Bioelectron; 2018 Jul; 111():138-143. PubMed ID: 29665553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
    Nyberg KD; Hu KH; Kleinman SH; Khismatullin DB; Butte MJ; Rowat AC
    Biophys J; 2017 Oct; 113(7):1574-1584. PubMed ID: 28978449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.