These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29172457)

  • 21. Deformability-based cell selection with downstream immunofluorescence analysis.
    Shaw Bagnall J; Byun S; Miyamoto DT; Kang JH; Maheswaran S; Stott SL; Toner M; Manalis SR
    Integr Biol (Camb); 2016 May; 8(5):654-64. PubMed ID: 26999591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microfluidic device with focusing and spacing control for resistance-based sorting of droplets and cells.
    Sajeesh P; Manasi S; Doble M; Sen AK
    Lab Chip; 2015; 15(18):3738-48. PubMed ID: 26235533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Electrode Shape on Impedance of Single HeLa Cell: A COMSOL Simulation.
    Wang MH; Chang WH
    Biomed Res Int; 2015; 2015():871603. PubMed ID: 25961043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y; Nguyen J; Wang C; Sun Y
    Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coincidence detection of heterogeneous cell populations from whole blood with coplanar electrodes in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Lab Chip; 2014 Nov; 14(22):4370-81. PubMed ID: 25231594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput biophysical measurement of human red blood cells.
    Zheng Y; Shojaei-Baghini E; Azad A; Wang C; Sun Y
    Lab Chip; 2012 Jul; 12(14):2560-7. PubMed ID: 22581052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic device featuring micro-constrained channels for multi-parametric assessment of cellular biomechanics and high-precision mechanical phenotyping of gastric cells.
    Heng Y; Zheng X; Xu Y; Yan J; Li Y; Sun L; Yang H
    Anal Chim Acta; 2024 May; 1301():342472. PubMed ID: 38553127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A scalable filtration method for high throughput screening based on cell deformability.
    Gill NK; Ly C; Nyberg KD; Lee L; Qi D; Tofig B; Reis-Sobreiro M; Dorigo O; Rao J; Wiedemeyer R; Karlan B; Lawrenson K; Freeman MR; Damoiseaux R; Rowat AC
    Lab Chip; 2019 Jan; 19(2):343-357. PubMed ID: 30566156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The physical origins of transit time measurements for rapid, single cell mechanotyping.
    Nyberg KD; Scott MB; Bruce SL; Gopinath AB; Bikos D; Mason TG; Kim JW; Choi HS; Rowat AC
    Lab Chip; 2016 Aug; 16(17):3330-9. PubMed ID: 27435631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical Impedance Measurements of Biological Cells in Response to External Stimuli.
    Mansoorifar A; Koklu A; Ma S; Raj GV; Beskok A
    Anal Chem; 2018 Apr; 90(7):4320-4327. PubMed ID: 29402081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Miniaturized Impedance Flow Cytometer: Design Rules and Integrated Readout.
    Carminati M; Ferrari G; Vahey MD; Voldman J; Sampietro M
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1438-1449. PubMed ID: 28952947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic cytometer based on dual photodiode detection for cell size and deformability analysis.
    Ji QQ; Du GS; van Uden MJ; Fang Q; den Toonder JM
    Talanta; 2013 Jul; 111():178-82. PubMed ID: 23622542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems.
    Odijk M; van der Meer AD; Levner D; Kim HJ; van der Helm MW; Segerink LI; Frimat JP; Hamilton GA; Ingber DE; van den Berg A
    Lab Chip; 2015 Feb; 15(3):745-52. PubMed ID: 25427650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence.
    Guck J; Schinkinger S; Lincoln B; Wottawah F; Ebert S; Romeyke M; Lenz D; Erickson HM; Ananthakrishnan R; Mitchell D; Käs J; Ulvick S; Bilby C
    Biophys J; 2005 May; 88(5):3689-98. PubMed ID: 15722433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deformability-based flow cytometry.
    Lincoln B; Erickson HM; Schinkinger S; Wottawah F; Mitchell D; Ulvick S; Bilby C; Guck J
    Cytometry A; 2004 Jun; 59(2):203-9. PubMed ID: 15170599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time Sequential Single-Cell Patterning with High Efficiency and High Density.
    Liu Y; Ren D; Ling X; Liang W; Li J; You Z; Yalikun Y; Tanaka Y
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.