These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29172504)

  • 1. Effect of Microbial Interaction on Urea Metabolism in Chinese Liquor Fermentation.
    Wu Q; Lin J; Cui K; Du R; Zhu Y; Xu Y
    J Agric Food Chem; 2017 Dec; 65(50):11133-11139. PubMed ID: 29172504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of Ethyl Carbamate and Urea with Lysinibacillus sphaericus MT33 in Chinese Liquor Fermentation.
    Cui K; Wu Q; Xu Y
    J Agric Food Chem; 2018 Feb; 66(6):1583-1590. PubMed ID: 29359925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.
    Wu D; Li X; Lu J; Chen J; Zhang L; Xie G
    FEMS Microbiol Lett; 2016 Jan; 363(1):fnv214. PubMed ID: 26538578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae.
    Guo XW; Li YZ; Guo J; Wang Q; Huang SY; Chen YF; Du LP; Xiao DG
    J Ind Microbiol Biotechnol; 2016 May; 43(5):671-9. PubMed ID: 26831650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain.
    Wu D; Li X; Shen C; Lu J; Chen J; Xie G
    Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine.
    Dahabieh MS; Husnik JI; Van Vuuren HJ
    J Appl Microbiol; 2010 Sep; 109(3):963-73. PubMed ID: 20408912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urea production by yeasts other than Saccharomyces in food fermentation.
    Wu Q; Cui K; Lin J; Zhu Y; Xu Y
    FEMS Yeast Res; 2017 Nov; 17(7):. PubMed ID: 29040547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Evolution Relieves Nitrogen Catabolite Repression and Decreases Urea Accumulation in Cultures of the Chinese Rice Wine Yeast Strain Saccharomyces cerevisiae XZ-11.
    Zhang W; Cheng Y; Li Y; Du G; Xie G; Zou H; Zhou J; Chen J
    J Agric Food Chem; 2018 Aug; 66(34):9061-9069. PubMed ID: 29882665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation.
    Wu D; Xie W; Li X; Cai G; Lu J; Xie G
    Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chinese Yellow Rice Wine Processing with Reduced Ethyl Carbamate Formation by Deleting Transcriptional Regulator Dal80p in
    Wei T; Jiao Z; Hu J; Lou H; Chen Q
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32781689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor.
    Du H; Song Z; Xu Y
    J Agric Food Chem; 2018 Jan; 66(1):387-392. PubMed ID: 29232952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Effect in Core Microbiota Associated with Sulfur Metabolism in Spontaneous Chinese Liquor Fermentation.
    Liu J; Wu Q; Wang P; Lin J; Huang L; Xu Y
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28970229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae.
    Zhang P; Hu X
    World J Microbiol Biotechnol; 2018 Mar; 34(3):47. PubMed ID: 29536194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative Response of
    Deng N; Du H; Xu Y
    J Agric Food Chem; 2020 Apr; 68(17):4903-4911. PubMed ID: 32180399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant Potential Ubiquitination Sites in Dur3p Enhance the Urea and Ethyl Carbamate Reduction in a Model Rice Wine System.
    Zhang P; Du G; Zou H; Xie G; Chen J; Shi Z; Zhou J
    J Agric Food Chem; 2017 Mar; 65(8):1641-1648. PubMed ID: 28185458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of citrulline to the formation of ethyl carbamate during Chinese rice wine production.
    Wang P; Sun J; Li X; Wu D; Li T; Lu J; Chen J; Xie G
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014 Apr; 31(4):587-92. PubMed ID: 24386880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits.
    Schehl B; Senn T; Lachenmeier DW; Rodicio R; Heinisch JJ
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):843-50. PubMed ID: 17216464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of Four GATA Factors to Reduce Urea and Ethyl Carbamate Formation in a Model Rice Wine System.
    Zhang P; Li B; Wen P; Wang P; Yang Y; Chen Q; Chang Y; Hu X
    J Agric Food Chem; 2018 Oct; 66(41):10881-10889. PubMed ID: 30246534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system.
    Zhao X; Zou H; Fu J; Zhou J; Du G; Chen J
    Appl Environ Microbiol; 2014 Jan; 80(1):392-8. PubMed ID: 24185848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.