BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29172946)

  • 1. Postprandial gut microbiota-driven choline metabolism links dietary cues to adipose tissue dysfunction.
    Schugar RC; Willard B; Wang Z; Brown JM
    Adipocyte; 2018 Jan; 7(1):49-56. PubMed ID: 29172946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism.
    Pathak P; Helsley RN; Brown AL; Buffa JA; Choucair I; Nemet I; Gogonea CB; Gogonea V; Wang Z; Garcia-Garcia JC; Cai L; Temel R; Sangwan N; Hazen SL; Brown JM
    Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1474-H1486. PubMed ID: 32330092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk.
    Anwar S; Bhandari U; Panda BP; Dubey K; Khan W; Ahmad S
    J Pharm Biomed Anal; 2018 Sep; 159():100-112. PubMed ID: 29980011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Gut Microbial Endocrine Organ in Type 2 Diabetes.
    Massey W; Brown JM
    Endocrinology; 2021 Feb; 162(2):. PubMed ID: 33373432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Microbiome in Heart Failure.
    Kitai T; Kirsop J; Tang WH
    Curr Heart Fail Rep; 2016 Apr; 13(2):103-9. PubMed ID: 26886380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial.
    Heianza Y; Sun D; Li X; DiDonato JA; Bray GA; Sacks FM; Qi L
    Gut; 2019 Feb; 68(2):263-270. PubMed ID: 29860242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut Microbiota and Cardiovascular Disease.
    Witkowski M; Weeks TL; Hazen SL
    Circ Res; 2020 Jul; 127(4):553-570. PubMed ID: 32762536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gut microbiome, diet, and links to cardiometabolic and chronic disorders.
    Aron-Wisnewsky J; Clément K
    Nat Rev Nephrol; 2016 Mar; 12(3):169-81. PubMed ID: 26616538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiome, trimethylamine N-oxide, and cardiometabolic disease.
    Tang WH; Hazen SL
    Transl Res; 2017 Jan; 179():108-115. PubMed ID: 27490453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trimethylamine N-oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer.
    Oellgaard J; Winther SA; Hansen TS; Rossing P; von Scholten BJ
    Curr Pharm Des; 2017; 23(25):3699-3712. PubMed ID: 28641532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the relationship between the gut microbiota and amino acid metabolism.
    Lin R; Liu W; Piao M; Zhu H
    Amino Acids; 2017 Dec; 49(12):2083-2090. PubMed ID: 28932911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of the Intestinal Microbiota in Diagnosing the Progression of Diabetes and the Presence of Cardiovascular Complications.
    Leustean AM; Ciocoiu M; Sava A; Costea CF; Floria M; Tarniceriu CC; Tanase DM
    J Diabetes Res; 2018; 2018():5205126. PubMed ID: 30539026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics.
    Geurts L; Neyrinck AM; Delzenne NM; Knauf C; Cani PD
    Benef Microbes; 2014 Mar; 5(1):3-17. PubMed ID: 23886976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut Microbiota in Adipose Tissue Dysfunction Induced Cardiovascular Disease: Role as a Metabolic Organ.
    Yang X; Zhang X; Yang W; Yu H; He Q; Xu H; Li S; Shang Z; Gao X; Wang Y; Tong Q
    Front Endocrinol (Lausanne); 2021; 12():749125. PubMed ID: 34552566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms.
    Schugar RC; Gliniak CM; Osborn LJ; Massey W; Sangwan N; Horak A; Banerjee R; Orabi D; Helsley RN; Brown AL; Burrows A; Finney C; Fung KK; Allen FM; Ferguson D; Gromovsky AD; Neumann C; Cook K; McMillan A; Buffa JA; Anderson JT; Mehrabian M; Goudarzi M; Willard B; Mak TD; Armstrong AR; Swanson G; Keshavarzian A; Garcia-Garcia JC; Wang Z; Lusis AJ; Hazen SL; Brown JM
    Elife; 2022 Jan; 11():. PubMed ID: 35072627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity.
    Sun G; Yin Z; Liu N; Bian X; Yu R; Su X; Zhang B; Wang Y
    Biochem Biophys Res Commun; 2017 Nov; 493(2):964-970. PubMed ID: 28942145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery.
    Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT
    Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut Microbiota in Vascular Disease: Therapeutic Target?
    Anbazhagan AN; Priyamvada S; Priyadarshini M
    Curr Vasc Pharmacol; 2017; 15(4):291-295. PubMed ID: 28056754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut Microbiome and Precision Nutrition in Heart Failure: Hype or Hope?
    Chaikijurajai T; Tang WHW
    Curr Heart Fail Rep; 2021 Apr; 18(2):23-32. PubMed ID: 33559845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging role of intestinal microbiota and microbial metabolites in metabolic control.
    Herrema H; IJzerman RG; Nieuwdorp M
    Diabetologia; 2017 Apr; 60(4):613-617. PubMed ID: 28013341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.