BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29173018)

  • 1. Formation of pollen apertures in Arabidopsis requires an interplay between male meiosis, development of INP1-decorated plasma membrane domains, and the callose wall.
    Dobritsa AA; Reeder SH
    Plant Signal Behav; 2017 Dec; 12(12):e1393136. PubMed ID: 29173018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pollen Aperture Factor INP1 Acts Late in Aperture Formation by Excluding Specific Membrane Domains from Exine Deposition.
    Dobritsa AA; Kirkpatrick AB; Reeder SH; Li P; Owen HA
    Plant Physiol; 2018 Jan; 176(1):326-339. PubMed ID: 28899962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Members of the ELMOD protein family specify formation of distinct aperture domains on the
    Zhou Y; Amom P; Reeder SH; Lee BH; Helton A; Dobritsa AA
    Elife; 2021 Sep; 10():. PubMed ID: 34591014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The novel plant protein INAPERTURATE POLLEN1 marks distinct cellular domains and controls formation of apertures in the Arabidopsis pollen exine.
    Dobritsa AA; Coerper D
    Plant Cell; 2012 Nov; 24(11):4452-64. PubMed ID: 23136373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1.
    Reeder SH; Lee BH; Fox R; Dobritsa AA
    PLoS Genet; 2016 May; 12(5):e1006060. PubMed ID: 27177036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INP1 involvement in pollen aperture formation is evolutionarily conserved and may require species-specific partners.
    Li P; Ben-Menni Schuler S; Reeder SH; Wang R; Suárez Santiago VN; Dobritsa AA
    J Exp Bot; 2018 Feb; 69(5):983-996. PubMed ID: 29190388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis Protein Kinase D6PKL3 Is Involved in the Formation of Distinct Plasma Membrane Aperture Domains on the Pollen Surface.
    Lee BH; Weber ZT; Zourelidou M; Hofmeister BT; Schmitz RJ; Schwechheimer C; Dobritsa AA
    Plant Cell; 2018 Sep; 30(9):2038-2056. PubMed ID: 30150313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of aperture sites on the pollen surface as a model for development of distinct cellular domains.
    Zhou Y; Dobritsa AA
    Plant Sci; 2019 Nov; 288():110222. PubMed ID: 31521218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between pollen aperture pattern and callose deposition in late tetrad stage in three species producing atypical pollen grains.
    Albert B; Ressayre A; Nadot S
    Am J Bot; 2011 Feb; 98(2):189-96. PubMed ID: 21613108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning.
    Li WL; Liu Y; Douglas CJ
    Plant Physiol; 2017 Jan; 173(1):167-182. PubMed ID: 27495941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis.
    Dong X; Hong Z; Sivaramakrishnan M; Mahfouz M; Verma DP
    Plant J; 2005 May; 42(3):315-28. PubMed ID: 15842618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters.
    Yim S; Khare D; Kang J; Hwang JU; Liang W; Martinoia E; Zhang D; Kang B; Lee Y
    Plant Cell Rep; 2016 Sep; 35(9):1863-73. PubMed ID: 27271688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis.
    Lu P; Chai M; Yang J; Ning G; Wang G; Ma H
    Plant Physiol; 2014 Apr; 164(4):1893-904. PubMed ID: 24567187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall.
    Rhee SY; Somerville CR
    Plant J; 1998 Jul; 15(1):79-88. PubMed ID: 9744097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of tetrad shape and intersporal callose wall formation on pollen aperture pattern ontogeny in two eudicot species.
    Albert B; Nadot S; Dreyer L; Ressayre A
    Ann Bot; 2010 Oct; 106(4):557-64. PubMed ID: 20685726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A species-specific functional module controls formation of pollen apertures.
    Lee BH; Wang R; Moberg IM; Reeder SH; Amom P; Tan MH; Amstutz K; Chandna P; Helton A; Andrianova EP; Zhulin IB; Dobritsa AA
    Nat Plants; 2021 Jul; 7(7):966-978. PubMed ID: 34183783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gibberellin Induces Diploid Pollen Formation by Interfering with Meiotic Cytokinesis.
    Liu B; De Storme N; Geelen D
    Plant Physiol; 2017 Jan; 173(1):338-353. PubMed ID: 27621423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis.
    Quilichini TD; Samuels AL; Douglas CJ
    Plant Cell; 2014 Nov; 26(11):4483-98. PubMed ID: 25415974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Arabidopsis Exine Formation Defect (EFD) gene is required for primexine patterning and is critical for pollen fertility.
    Hu J; Wang Z; Zhang L; Sun MX
    New Phytol; 2014 Jul; 203(1):140-54. PubMed ID: 24697753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis.
    Paxson-Sowders DM; Dodrill CH; Owen HA; Makaroff CA
    Plant Physiol; 2001 Dec; 127(4):1739-49. PubMed ID: 11743117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.