These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 2917409)

  • 1. Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development.
    Vanselow J; Thanos S; Godement P; Henke-Fahle S; Bonhoeffer F
    Brain Res Dev Brain Res; 1989 Jan; 45(1):15-27. PubMed ID: 2917409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial environment in the developing superior colliculus of hamsters in relation to the timing of retinal axon ingrowth.
    Wu DY; Jhaveri S; Schneider GE
    J Comp Neurol; 1995 Jul; 358(2):206-18. PubMed ID: 7560282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal arborization in the developing chick retinotectal system.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1987 Jul; 261(1):155-64. PubMed ID: 3624542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the development of the chick optic tectum. IV. An autoradiographic study of the development of retino-tectal connections.
    Crossland WJ; Cowan WM; Rogers LA
    Brain Res; 1975 Jun; 91(1):1-23. PubMed ID: 48407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-species collapse activity of polarized radial glia on retinal ganglion cell axons.
    Stier H; Schlosshauer B
    Glia; 1999 Jan; 25(2):143-53. PubMed ID: 9890629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for shifting connections during development of the chick retinotectal projection.
    McLoon SC
    J Neurosci; 1985 Oct; 5(10):2570-80. PubMed ID: 2995601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extracellular matrix molecule tenascin: expression in the developing chick retinotectal system and substrate properties for retinal ganglion cell neurites in vitro.
    Bartsch S; Husmann K; Schachner M; Bartsch U
    Eur J Neurosci; 1995 May; 7(5):907-16. PubMed ID: 7542126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The developing chick isthmo-optic nucleus forms a transient efferent projection to the optic tectum.
    Wizenmann A; Thanos S
    Neurosci Lett; 1990 Jun; 113(3):241-6. PubMed ID: 2381560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal gradient of astrocyte development in the chick optic tectum: evidence for multiple origins and migratory paths of astrocytes.
    Seo JH; Chang JH; Song SH; Lee HN; Jeon GS; Kim DW; Chung CK; Cho SS
    Neurochem Res; 2008 Jul; 33(7):1346-55. PubMed ID: 18288610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for tectal midline glia in the unilateral containment of retinocollicular axons.
    Wu DY; Schneider GE; Silver J; Poston M; Jhaveri S
    J Neurosci; 1998 Oct; 18(20):8344-55. PubMed ID: 9763478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system.
    Braisted JE; McLaughlin T; Wang HU; Friedman GC; Anderson DJ; O'leary DD
    Dev Biol; 1997 Nov; 191(1):14-28. PubMed ID: 9356168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outgrowth and directional specificity of fibers from embryonic retinal transplants in the chick optic tectum.
    Thanos S; Dütting D
    Brain Res; 1987 Apr; 429(2):161-79. PubMed ID: 3567662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmentally regulated and spatially restricted antigens of radial glial cells.
    Herman JP; Victor JC; Sanes JR
    Dev Dyn; 1993 Aug; 197(4):307-18. PubMed ID: 8292827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of neurotrophin-3 (NT-3) and anterograde axonal transport of endogenous NT-3 by retinal ganglion cells in chick embryos.
    von Bartheld CS; Butowt R
    J Neurosci; 2000 Jan; 20(2):736-48. PubMed ID: 10632603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corresponding spatial gradients of TOP molecules in the developing retina and optic tectum.
    Trisler D; Collins F
    Science; 1987 Sep; 237(4819):1208-9. PubMed ID: 3629237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H; O'Leary DD
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of retinotectal projection pathway in the deep tectal laminae in the chick.
    Omi M; Harada H; Nakamura H
    J Comp Neurol; 2011 Sep; 519(13):2615-21. PubMed ID: 21491425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the formation of eye dominance stripes and patches in the doubly-innervated optic tectum of the chick.
    Fawcett JW; Cowan WM
    Brain Res; 1985 Jan; 349(1-2):147-63. PubMed ID: 3986583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations on the development and topographic order of retinotectal axons: anterograde and retrograde staining of axons and perikarya with rhodamine in vivo.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1983 Oct; 219(4):420-30. PubMed ID: 6643714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the retinotectal system in normal quail embryos: cytoarchitectonic development and optic fiber innervation.
    Senut MC; Alvarado-Mallart RM
    Brain Res; 1986 Sep; 394(1):123-40. PubMed ID: 2428449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.