BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 29175000)

  • 1. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain.
    Kelly MP
    Cell Signal; 2018 Jan; 42():281-291. PubMed ID: 29175000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphodiesterases in neurodegenerative disorders.
    Bollen E; Prickaerts J
    IUBMB Life; 2012 Dec; 64(12):965-70. PubMed ID: 23129425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PKA-dependent activation of PDE3A and PDE4 and inhibition of adenylyl cyclase V/VI in smooth muscle.
    Murthy KS; Zhou H; Makhlouf GM
    Am J Physiol Cell Physiol; 2002 Mar; 282(3):C508-17. PubMed ID: 11832336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Localization of the Cyclic Nucleotide Phosphodiesterase 10A in Bovine Testis and Mature Spermatozoa.
    Goupil S; Maréchal L; El Hajj H; Tremblay MÈ; Richard FJ; Leclerc P
    PLoS One; 2016; 11(8):e0161035. PubMed ID: 27548062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in cyclic nucleotide signaling are implicated in healthy aging and age-related pathologies of the brain.
    Gorny N; Kelly MP
    Vitam Horm; 2021; 115():265-316. PubMed ID: 33706951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of cAMP signaling system in SH-SY5Y neuroblastoma cells following expression of a constitutively active stimulatory G protein alpha, Q227L Gsalpha.
    Jang IS; Juhnn YS
    Exp Mol Med; 2001 Mar; 33(1):37-45. PubMed ID: 11322485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between phosphodiesterases in the regulation of the cardiac β-adrenergic pathway.
    Zhao CY; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2015 Nov; 88():29-38. PubMed ID: 26388264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atrial Natriuretic Peptide Affects Stimulus-Secretion Coupling of Pancreatic β-Cells.
    Undank S; Kaiser J; Sikimic J; Düfer M; Krippeit-Drews P; Drews G
    Diabetes; 2017 Nov; 66(11):2840-2848. PubMed ID: 28864549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphodiesterase regulation of alcohol drinking in rodents.
    Logrip ML
    Alcohol; 2015 Dec; 49(8):795-802. PubMed ID: 26095589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network.
    Zhao CY; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2016 Feb; 91():215-27. PubMed ID: 26773602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic nucleotide signalling in kidney fibrosis.
    Schinner E; Wetzl V; Schlossmann J
    Int J Mol Sci; 2015 Jan; 16(2):2320-51. PubMed ID: 25622251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes the vascular endothelial growth factor-stimulated MAPKs and downstream effectors AP-1 and CREB in mouse mesangial cells.
    Tripathi S; Pandey KN
    Mol Cell Biochem; 2012 Sep; 368(1-2):47-59. PubMed ID: 22610792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological modulation of phosphodiesterase-7 as a novel strategy for neurodegenerative disorders.
    Khan H; Tiwari C; Grewal AK; Singh TG; Chauhan S; Batiha GE
    Inflammopharmacology; 2022 Dec; 30(6):2051-2061. PubMed ID: 36272040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a Schizosaccharomyces pombe PKA-repressible reporter to study cGMP metabolising phosphodiesterases.
    Demirbas D; Ceyhan O; Wyman AR; Ivey FD; Allain C; Wang L; Sharuk MN; Francis SH; Hoffman CS
    Cell Signal; 2011 Mar; 23(3):594-601. PubMed ID: 21118717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes.
    Castro LR; Schittl J; Fischmeister R
    Circ Res; 2010 Nov; 107(10):1232-40. PubMed ID: 20847310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle.
    Murthy KS
    Biochem J; 2001 Nov; 360(Pt 1):199-208. PubMed ID: 11696008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic Nucleotides Signaling and Phosphodiesterase Inhibition: Defying Alzheimer's Disease.
    Sharma VK; Singh TG; Singh S
    Curr Drug Targets; 2020; 21(13):1371-1384. PubMed ID: 32718286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases.
    VerPlank JJS; Tyrkalska SD; Fleming A; Rubinsztein DC; Goldberg AL
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14220-14230. PubMed ID: 32513741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases.
    Xiang Y; Naik S; Zhao L; Shi J; Ke H
    Med Res Rev; 2024 Jul; 44(4):1404-1445. PubMed ID: 38279990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic adenosine 3'-5'-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac).
    Vitali E; Peverelli E; Giardino E; Locatelli M; Lasio GB; Beck-Peccoz P; Spada A; Lania AG; Mantovani G
    Mol Cell Endocrinol; 2014 Mar; 383(1-2):193-202. PubMed ID: 24373949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.