BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 29175088)

  • 1. Constitutive up-regulation of Turandot genes rather than changes in acclimation ability is associated with the evolutionary adaptation to temperature fluctuations in Drosophila simulans.
    Manenti T; Loeschcke V; Sørensen JG
    J Insect Physiol; 2018 Jan; 104():40-47. PubMed ID: 29175088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms underlying plasticity in a thermally varying environment.
    Salachan PV; Sørensen JG
    Mol Ecol; 2022 Jun; 31(11):3174-3191. PubMed ID: 35397190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus.
    Podrabsky JE; Somero GN
    J Exp Biol; 2004 Jun; 207(Pt 13):2237-54. PubMed ID: 15159429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.
    Sørensen JG; Schou MF; Kristensen TN; Loeschcke V
    Sci Rep; 2016 Aug; 6():30975. PubMed ID: 27487917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.
    Manenti T; Loeschcke V; Moghadam NN; Sørensen JG
    J Evol Biol; 2015 Nov; 28(11):2078-87. PubMed ID: 26299271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictability rather than amplitude of temperature fluctuations determines stress resistance in a natural population of Drosophila simulans.
    Manenti T; Sørensen JG; Moghadam NN; Loeschcke V
    J Evol Biol; 2014 Oct; 27(10):2113-22. PubMed ID: 25146297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of thermal tolerance genes in two Drosophila species with different acclimation capacities.
    Sørensen JG; Giribets MP; Tarrío R; Rodríguez-Trelles F; Schou MF; Loeschcke V
    J Therm Biol; 2019 Aug; 84():200-207. PubMed ID: 31466754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes.
    Manenti T; Sørensen JG; Moghadam NN; Loeschcke V
    Heredity (Edinb); 2016 Sep; 117(3):149-54. PubMed ID: 27273321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional study of the role of Turandot genes in Drosophila melanogaster: An emerging candidate mechanism for inducible heat tolerance.
    Amstrup AB; Bæk I; Loeschcke V; Givskov Sørensen J
    J Insect Physiol; 2022; 143():104456. PubMed ID: 36396076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pronounced Plastic and Evolutionary Responses to Unpredictable Thermal Fluctuations in
    Sørensen JG; Manenti T; Bechsgaard JS; Schou MF; Kristensen TN; Loeschcke V
    Front Genet; 2020; 11():555843. PubMed ID: 33193631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold acclimation triggers major transcriptional changes in Drosophila suzukii.
    Enriquez T; Colinet H
    BMC Genomics; 2019 May; 20(1):413. PubMed ID: 31117947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation.
    Kristensen TN; Kjeldal H; Schou MF; Nielsen JL
    J Exp Biol; 2016 Apr; 219(Pt 7):969-76. PubMed ID: 26823104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proteomic response of cheliped myofibril tissue in the eurythermal porcelain crab Petrolisthes cinctipes to heat shock following acclimation to daily temperature fluctuations.
    Garland MA; Stillman JH; Tomanek L
    J Exp Biol; 2015 Feb; 218(Pt 3):388-403. PubMed ID: 25653421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster.
    Sørensen JG; Loeschcke V; Kristensen TN
    J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daily increasing or decreasing photoperiod affects stress resistance and life history traits in four Drosophila species.
    Manenti T; Sten LJ; Loeschcke V
    J Insect Physiol; 2021 Jul; 132():104251. PubMed ID: 33971199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta.
    Noer NK; Pagter M; Bahrndorff S; Malmendal A; Kristensen TN
    PLoS One; 2020; 15(10):e0237201. PubMed ID: 33119606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
    Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU
    J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress.
    Boher F; Trefault N; Piulachs MD; Bellés X; Godoy-Herrera R; Bozinovic F
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug; 162(4):391-6. PubMed ID: 22561660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHROMOSOMAL ANALYSIS OF HEAT-SHOCK TOLERANCE IN DROSOPHILA MELANOGASTER EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY.
    Cavicchi S; Guerra D; Torre V; Huey RB
    Evolution; 1995 Aug; 49(4):676-684. PubMed ID: 28565130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.