These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29175390)

  • 1. Human adipose-derived stem cells and simvastatin-functionalized biomimetic calcium phosphate to construct a novel tissue-engineered bone.
    Zhang X; Jiang W; Liu Y; Zhang P; Wang L; Li W; Wu G; Ge Y; Zhou Y
    Biochem Biophys Res Commun; 2018 Jan; 495(1):1264-1270. PubMed ID: 29175390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenic induction of bone marrow-derived stromal cells on simvastatin-releasing, biodegradable, nano- to microscale fiber scaffolds.
    Wadagaki R; Mizuno D; Yamawaki-Ogata A; Satake M; Kaneko H; Hagiwara S; Yamamoto N; Narita Y; Hibi H; Ueda M
    Ann Biomed Eng; 2011 Jul; 39(7):1872-81. PubMed ID: 21590488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.
    Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L
    J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.
    Wittenburg G; Flade V; Garbe AI; Lauer G; Labudde D
    Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Repair of calvarial defect using a tissue-engineered bone with simvastatin-loaded β-tricalcium phosphate scaffold and adipose derived stem cells in rabbits].
    Xu LY; Sun XJ; Zhang XL; Jin YQ; Wu YQ; Jiang XQ
    Shanghai Kou Qiang Yi Xue; 2013 Aug; 22(4):361-7. PubMed ID: 24100891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate.
    Liu G; Zhao L; Cui L; Liu W; Cao Y
    Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Promoted role of bone morphogenetic protein 2/7 heterodimer in the osteogenic differentiation of human adipose-derived stem cells].
    Zhang X; Liu YS; Lv LW; Chen T; Wu G; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2016 Feb; 48(1):37-44. PubMed ID: 26885906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-mediated BMP-2 release from a novel dual-drug delivery system promotes bone formation.
    Liu T; Wu G; Zheng Y; Wismeijer D; Everts V; Liu Y
    Clin Oral Implants Res; 2014 Dec; 25(12):1412-21. PubMed ID: 25539008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and pro-osteodifferentiation capabilities.
    Liu Y; Zhang X; Liu Y; Jin X; Fan C; Ye H; Ou M; Lv L; Wu G; Zhou Y
    PLoS One; 2014; 9(5):e97741. PubMed ID: 24844416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(l-Lactic Acid)/Gelatin Fibrous Scaffold Loaded with Simvastatin/Beta-Cyclodextrin-Modified Hydroxyapatite Inclusion Complex for Bone Tissue Regeneration.
    Lee JB; Kim JE; Balikov DA; Bae MS; Heo DN; Lee D; Rim HJ; Lee DW; Sung HJ; Kwon IK
    Macromol Biosci; 2016 Jul; 16(7):1027-38. PubMed ID: 26996294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors of osteogenesis influencing various human stem cells on third-generation gelatin/β-tricalcium phosphate scaffold material.
    Weinand C; Nabili A; Khumar M; Dunn JR; Ramella-Roman J; Jeng JC; Jordan MH; Tabata Y
    Rejuvenation Res; 2011 Apr; 14(2):185-94. PubMed ID: 21235414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study.
    Masaeli R; Jafarzadeh Kashi TS; Dinarvand R; Rakhshan V; Shahoon H; Hooshmand B; Mashhadi Abbas F; Raz M; Rajabnejad A; Eslami H; Khoshroo K; Tahriri M; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():171-83. PubMed ID: 27612702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simvastatin coating of TiO₂ scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells.
    Pullisaar H; Reseland JE; Haugen HJ; Brinchmann JE; Ostrup E
    Biochem Biophys Res Commun; 2014 Apr; 447(1):139-44. PubMed ID: 24704451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [EXPERIMENTAL STUDY ON OSTEOGENESIS OF SYNOVIUM-DERIVED MESENCHYMAL STEM CELLS IN VITRO AND IN VIVO].
    Zheng W; Yang M; Wu C; Su X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Jan; 30(1):102-9. PubMed ID: 27062856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration.
    Liu YS; Ou ME; Liu H; Gu M; Lv LW; Fan C; Chen T; Zhao XH; Jin CY; Zhang X; Ding Y; Zhou YS
    Biomaterials; 2014 May; 35(15):4489-98. PubMed ID: 24589359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference.
    Kasten P; Vogel J; Beyen I; Weiss S; Niemeyer P; Leo A; Lüginbuhl R
    J Biomater Appl; 2008 Sep; 23(2):169-88. PubMed ID: 18632770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of hydrogels in the in vivo formation of tissue-engineered bone using mesenchymal stem cells and beta-tricalcium phosphate.
    Weinand C; Gupta R; Huang AY; Weinberg E; Madisch I; Qudsi RA; Neville CM; Pomerantseva I; Vacanti JP
    Tissue Eng; 2007 Apr; 13(4):757-65. PubMed ID: 17223744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.