BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29175403)

  • 1. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces.
    Liang Y; Liu X; Allen MR
    Chemosphere; 2018 Feb; 193():754-762. PubMed ID: 29175403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption and migration of organophosphate flame retardants between sources and settled dust.
    Liu X; Folk E
    Chemosphere; 2021 Sep; 278():130415. PubMed ID: 33839398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments.
    Liang Y; Liu X; Allen MR
    Environ Sci Technol; 2018 May; 52(10):5821-5829. PubMed ID: 29671311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea.
    Lee S; Jeong W; Kannan K; Moon HB
    Water Res; 2016 Oct; 103():182-188. PubMed ID: 27450356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indoor organophosphate and polybrominated flame retardants in Tokyo.
    Saito I; Onuki A; Seto H
    Indoor Air; 2007 Feb; 17(1):28-36. PubMed ID: 17257150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal distribution and mass loading of organophosphate flame retardants (OPFRs) in the Yellow River of China (Henan segment).
    Han J; Tian J; Feng J; Guo W; Dong S; Yan X; Su X; Sun J
    Environ Pollut; 2021 Dec; 290():118000. PubMed ID: 34482244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organophosphate flame retardants in Hangzhou tap water system: Occurrence, distribution, and exposure risk assessment.
    Zhang Q; Li J; Lin S; Ying Z; Hu S; Wang Y; Mo X
    Sci Total Environ; 2022 Nov; 849():157644. PubMed ID: 35905952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence, distribution, and potential exposure risk of organophosphate flame retardants in house dust in South Korea.
    Gwon HR; Oh HJ; Chang KH; Isobe T; Lee SY; Kim JH; You SJ; Kim JG; Kim JW
    Sci Total Environ; 2021 May; 770():144571. PubMed ID: 33515873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organophosphate flame retardants in leachates from six municipal landfills across China.
    Qi C; Yu G; Zhong M; Peng G; Huang J; Wang B
    Chemosphere; 2019 Mar; 218():836-844. PubMed ID: 30508802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal variations of PM
    Wang D; Wang P; Wang Y; Zhang W; Zhu C; Sun H; Matsiko J; Zhu Y; Li Y; Meng W; Zhang Q; Jiang G
    Sci Total Environ; 2019 May; 666():226-234. PubMed ID: 30798233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: comparison of concentrations and distribution profiles in different microenvironments.
    Zhou L; Hiltscher M; Gruber D; Püttmann W
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):10992-11005. PubMed ID: 27230144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of tris(1-chloro-2-propyl)phosphate and tris(2-chloroethyl)phosphate on cell viability and morphological changes in peripheral blood mononuclear cells (in vitro study).
    Mokra K; Bukowski K; Woźniak K
    Hum Exp Toxicol; 2018 Dec; 37(12):1336-1345. PubMed ID: 29945461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of gas-phase concentrations of organophosphate flame retardants at the material surface using a midget emission cell coupled to solid-phase microextraction.
    Plaisance H; Ghislain M; Desauziers V
    Anal Chim Acta; 2021 Nov; 1186():339100. PubMed ID: 34756255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity comparison and risk assessment of two chlorinated organophosphate flame retardants (TCEP and TCPP) on Polypedates megacephalus tadpoles.
    Xie YG; Wang ZY; Xie WQ; Xiang ZY; Cao XD; Hao JJ; Ding GH
    Aquat Toxicol; 2024 Jul; 272():106979. PubMed ID: 38823072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of alternative flame retardants in indoor dust from New Zealand: indoor sources and human exposure assessment.
    Ali N; Dirtu AC; Van den Eede N; Goosey E; Harrad S; Neels H; 't Mannetje A; Coakley J; Douwes J; Covaci A
    Chemosphere; 2012 Sep; 88(11):1276-82. PubMed ID: 22551874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States.
    Kim UJ; Wang Y; Li W; Kannan K
    Environ Int; 2019 Apr; 125():342-349. PubMed ID: 30739054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organophosphate flame retardants and plasticizers in sediment and bivalves along the Korean coast: Occurrence, geographical distribution, and a potential for bioaccumulation.
    Choi W; Lee S; Lee HK; Moon HB
    Mar Pollut Bull; 2020 Jul; 156():111275. PubMed ID: 32510414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance.
    Alzualde A; Behl M; Sipes NS; Hsieh JH; Alday A; Tice RR; Paules RS; Muriana A; Quevedo C
    Neurotoxicol Teratol; 2018; 70():40-50. PubMed ID: 30312655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate.
    Bukowska B
    Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity.
    Sun L; Xu W; Peng T; Chen H; Ren L; Tan H; Xiao D; Qian H; Fu Z
    Neurotoxicol Teratol; 2016; 55():16-22. PubMed ID: 27018022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.