These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 29175411)
21. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research. Poulin P; Burczynski FJ; Haddad S J Pharm Sci; 2016 Feb; 105(2):497-508. PubMed ID: 26173749 [TBL] [Abstract][Full Text] [Related]
22. Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach. Zurlinden TJ; Reisfeld B Eur J Drug Metab Pharmacokinet; 2016 Jun; 41(3):267-80. PubMed ID: 25636597 [TBL] [Abstract][Full Text] [Related]
23. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions. Greupink R; Schreurs M; Benne MS; Huisman MT; Russel FG Eur J Pharm Sci; 2013 Aug; 49(5):819-28. PubMed ID: 23806476 [TBL] [Abstract][Full Text] [Related]
24. Population pharmacokinetics of doxorubicin: establishment of a NONMEM model for adults and children older than 3 years. Kontny NE; Würthwein G; Joachim B; Boddy AV; Krischke M; Fuhr U; Thompson PA; Jörger M; Schellens JH; Hempel G Cancer Chemother Pharmacol; 2013 Mar; 71(3):749-63. PubMed ID: 23314734 [TBL] [Abstract][Full Text] [Related]
25. A paradigm shift in pharmacokinetic-pharmacodynamic (PKPD) modeling: rule of thumb for estimating free drug level in tissue compared with plasma to guide drug design. Poulin P J Pharm Sci; 2015 Jul; 104(7):2359-68. PubMed ID: 25943586 [TBL] [Abstract][Full Text] [Related]
26. Pharmacokinetics of intravenous and oral amitriptyline and its active metabolite nortriptyline in Greyhound dogs. Norkus C; Rankin D; KuKanich B Vet Anaesth Analg; 2015 Nov; 42(6):580-9. PubMed ID: 25683584 [TBL] [Abstract][Full Text] [Related]
27. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. Poulin P; Theil FP J Pharm Sci; 2000 Jan; 89(1):16-35. PubMed ID: 10664535 [TBL] [Abstract][Full Text] [Related]
28. A stochastic whole-body physiologically based pharmacokinetic model to assess the impact of inter-individual variability on tissue dosimetry over the human lifespan. Beaudouin R; Micallef S; Brochot C Regul Toxicol Pharmacol; 2010 Jun; 57(1):103-16. PubMed ID: 20122977 [TBL] [Abstract][Full Text] [Related]
29. Development of a permeability-limited model of the human brain and cerebrospinal fluid (CSF) to integrate known physiological and biological knowledge: Estimating time varying CSF drug concentrations and their variability using in vitro data. Gaohua L; Neuhoff S; Johnson TN; Rostami-Hodjegan A; Jamei M Drug Metab Pharmacokinet; 2016 Jun; 31(3):224-33. PubMed ID: 27236639 [TBL] [Abstract][Full Text] [Related]
30. [Valpromide-amitriptyline interaction. Increase in the bioavailability of amitriptyline and nortriptyline caused by valpromide]. Bertschy G; Vandel S; Jounet JM; Allers G Encephale; 1990; 16(1):43-5. PubMed ID: 2109680 [TBL] [Abstract][Full Text] [Related]
31. The Promises of Quantitative Proteomics in Precision Medicine. Prasad B; Vrana M; Mehrotra A; Johnson K; Bhatt DK J Pharm Sci; 2017 Mar; 106(3):738-744. PubMed ID: 27939376 [TBL] [Abstract][Full Text] [Related]
32. Mechanistic modeling of hepatic transport from cells to whole body: application to napsagatran and fexofenadine. Poirier A; Funk C; Scherrmann JM; Lavé T Mol Pharm; 2009; 6(6):1716-33. PubMed ID: 19739673 [TBL] [Abstract][Full Text] [Related]
33. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Jones HM; Barton HA; Lai Y; Bi YA; Kimoto E; Kempshall S; Tate SC; El-Kattan A; Houston JB; Galetin A; Fenner KS Drug Metab Dispos; 2012 May; 40(5):1007-17. PubMed ID: 22344703 [TBL] [Abstract][Full Text] [Related]
34. Physiologically-based pharmacokinetic modeling of target-mediated drug disposition of bortezomib in mice. Zhang L; Mager DE J Pharmacokinet Pharmacodyn; 2015 Oct; 42(5):541-52. PubMed ID: 26391023 [TBL] [Abstract][Full Text] [Related]
35. Redistribution of basic drugs into cardiac blood from surrounding tissues during early-stages postmortem. Moriya F; Hashimoto Y J Forensic Sci; 1999 Jan; 44(1):10-6. PubMed ID: 9987864 [TBL] [Abstract][Full Text] [Related]
36. Predicting Drug Concentration-Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically-Based Pharmacokinetic Model. Yamamoto Y; Välitalo PA; Huntjens DR; Proost JH; Vermeulen A; Krauwinkel W; Beukers MW; van den Berg DJ; Hartman R; Wong YC; Danhof M; van Hasselt JGC; de Lange ECM CPT Pharmacometrics Syst Pharmacol; 2017 Nov; 6(11):765-777. PubMed ID: 28891201 [TBL] [Abstract][Full Text] [Related]
37. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Lüpfert C; Reichel A Chem Biodivers; 2005 Nov; 2(11):1462-86. PubMed ID: 17191947 [TBL] [Abstract][Full Text] [Related]
38. Physiologically Based Pharmacokinetic Modeling of Nanoparticles. Yuan D; He H; Wu Y; Fan J; Cao Y J Pharm Sci; 2019 Jan; 108(1):58-72. PubMed ID: 30385282 [TBL] [Abstract][Full Text] [Related]
39. A fuzzy physiologically based pharmacokinetic modeling framework to predict drug disposition in humans. Seng KY; Vicini P; Nestorov IA Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6485-8. PubMed ID: 17959432 [TBL] [Abstract][Full Text] [Related]
40. Does the Systemic Plasma Profile Inform the Liver Profile? Analysis Using a Physiologically Based Pharmacokinetic Model and Individual Compounds. Li R; Maurer TS; Sweeney K; Barton HA AAPS J; 2016 May; 18(3):746-56. PubMed ID: 26951483 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]