These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29175513)

  • 1. Sleep augments training-induced improvement in working memory in children and adults.
    Zinke K; Noack H; Born J
    Neurobiol Learn Mem; 2018 Jan; 147():46-53. PubMed ID: 29175513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sleep inertia after daytime naps vary with executive load and time of day.
    Groeger JA; Lo JC; Burns CG; Dijk DJ
    Behav Neurosci; 2011 Apr; 125(2):252-60. PubMed ID: 21463024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep-dependent consolidation of procedural motor memories in children and adults: the pre-sleep level of performance matters.
    Wilhelm I; Metzkow-Mészàros M; Knapp S; Born J
    Dev Sci; 2012 Jul; 15(4):506-15. PubMed ID: 22709400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Working Memory Training Improves Dual-Task Performance on Motor Tasks.
    Kimura T; Kaneko F; Nagahata K; Shibata E; Aoki N
    J Mot Behav; 2017; 49(4):388-397. PubMed ID: 27726513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning performance is linked to procedural memory consolidation across both sleep and wakefulness.
    Rångtell FH; Karamchedu S; Andersson P; van Egmond L; Hultgren T; Broman JE; Cedernaes J; Benedict C
    Sci Rep; 2017 Aug; 7(1):10234. PubMed ID: 28860592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of sleep timing in children's observational learning.
    van Schalkwijk FJ; Benjamins JS; Migliorati F; de Nooijer JA; van Someren EJ; van Gog T; van der Werf YD
    Neurobiol Learn Mem; 2015 Nov; 125():98-105. PubMed ID: 26303022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An N-methyl-D-aspartate receptor agonist facilitates sleep-independent synaptic plasticity associated with working memory capacity enhancement.
    Kuriyama K; Honma M; Shimazaki M; Horie M; Yoshiike T; Koyama S; Kim Y
    Sci Rep; 2011; 1():127. PubMed ID: 22355644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emotional working memory during sustained wakefulness.
    Tempesta D; De Gennaro L; Presaghi F; Ferrara M
    J Sleep Res; 2014 Dec; 23(6):646-656. PubMed ID: 24905752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between poor sleep and daytime cognitive performance in young adults with autism.
    Limoges É; Bolduc C; Berthiaume C; Mottron L; Godbout R
    Res Dev Disabil; 2013 Apr; 34(4):1322-35. PubMed ID: 23417137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed benefit of naps on motor learning in preschool children.
    Desrochers PC; Kurdziel LB; Spencer RM
    Exp Brain Res; 2016 Mar; 234(3):763-72. PubMed ID: 26645305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consolidation through the looking-glass: sleep-dependent proactive interference on visuomotor adaptation in children.
    Urbain C; Houyoux E; Albouy G; Peigneux P
    J Sleep Res; 2014 Feb; 23(1):44-52. PubMed ID: 24010959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sleep on gross motor memory.
    Kempler L; Richmond JL
    Memory; 2012; 20(8):907-14. PubMed ID: 22901032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomic/central coupling benefits working memory in healthy young adults.
    Chen PC; Whitehurst LN; Naji M; Mednick SC
    Neurobiol Learn Mem; 2020 Sep; 173():107267. PubMed ID: 32535198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of an afternoon nap on sustained attention and working memory: The role of physiological arousal and sleep variables.
    Ru T; Qian L; Chen Q; Sun H; Zhou G
    Int J Psychophysiol; 2022 Sep; 179():21-29. PubMed ID: 35753563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cognitive appraisal and mental workload factors on performance in an arithmetic task.
    Galy E; Mélan C
    Appl Psychophysiol Biofeedback; 2015 Dec; 40(4):313-25. PubMed ID: 26205469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local increase of sleep slow wave activity after three weeks of working memory training in children and adolescents.
    Pugin F; Metz AJ; Wolf M; Achermann P; Jenni OG; Huber R
    Sleep; 2015 Apr; 38(4):607-14. PubMed ID: 25669190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Working memory training improvements and gains in non-trained cognitive tasks in young and older adults.
    Heinzel S; Schulte S; Onken J; Duong QL; Riemer TG; Heinz A; Kathmann N; Rapp MA
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2014; 21(2):146-73. PubMed ID: 23639070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning and sleep-dependent consolidation of spatial and procedural memories are unaltered in young men under a fixed short sleep schedule.
    Cedernaes J; Sand F; Liethof L; Lampola L; Hassanzadeh S; Axelsson EK; Yeganeh A; Ros O; Broman JE; Schiöth HB; Benedict C
    Neurobiol Learn Mem; 2016 May; 131():87-94. PubMed ID: 26995308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive benefits of last night's sleep: daily variations in children's sleep behavior are related to working memory fluctuations.
    Könen T; Dirk J; Schmiedek F
    J Child Psychol Psychiatry; 2015 Feb; 56(2):171-82. PubMed ID: 25052368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive flexibility: A distinct element of performance impairment due to sleep deprivation.
    Honn KA; Hinson JM; Whitney P; Van Dongen HPA
    Accid Anal Prev; 2019 May; 126():191-197. PubMed ID: 29549968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.