These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 2917557)
1. Implication of the alpha 1 beta 1 interface in the hemoglobin affinity changes. A comparative study between normal and San Diego fully ligated hemoglobins. el Antri S; Zentz C; Alpert B Eur J Biochem; 1989 Jan; 179(1):165-8. PubMed ID: 2917557 [TBL] [Abstract][Full Text] [Related]
2. Conformational sensitivity of beta-93 cysteine SH to ligation of hemoglobin observed by FT-IR spectroscopy. Moh PP; Fiamingo FG; Alben JO Biochemistry; 1987 Sep; 26(19):6243-9. PubMed ID: 3689772 [TBL] [Abstract][Full Text] [Related]
3. Ligand-dependent heme-protein interactions in human hemoglobin studied by Fourier transform infrared spectroscopy. Effects of quaternary structure on alpha chain tertiary structure measured at the alpha-104(G11) cysteine-SH. Alben JO; Bare GH J Biol Chem; 1980 May; 255(9):3892-7. PubMed ID: 7372657 [No Abstract] [Full Text] [Related]
4. Conformation in solution of hemoglobin Osler (alpha 2 A beta 2 145 Tyr replaced by Asp). Bucci E; Fronticelli C; Nicklas J; Charache S J Biol Chem; 1979 Nov; 254(21):10811-9. PubMed ID: 40974 [TBL] [Abstract][Full Text] [Related]
5. Relationship between protein/solvent proton exchange and progressive conformation and fluctuation changes in hemoglobin. el Antri S; Sire O; Alpert B Eur J Biochem; 1990 Jul; 191(1):163-8. PubMed ID: 2379497 [TBL] [Abstract][Full Text] [Related]
6. Correlation between quaternary structure and ligand dissociation kinetics for fully liganded hemoglobin. Salhany JM; Ogawa S; Shulman RG Biochemistry; 1975 May; 14(10):2180-90. PubMed ID: 167803 [TBL] [Abstract][Full Text] [Related]
7. Hemoglobin San Diego (beta 109 (G11) val--met). Crystal structure of the deoxy form. Anderson NL J Clin Invest; 1974 Jan; 53(1):329-33. PubMed ID: 4808645 [TBL] [Abstract][Full Text] [Related]
8. The role of hemoglobin heme loss in Heinz body formation: studies with a partially heme-deficient hemoglobin and with genetically unstable hemoglobins. Jacob HS; Winterhalter KH J Clin Invest; 1970 Nov; 49(11):2008-16. PubMed ID: 5475984 [TBL] [Abstract][Full Text] [Related]
9. Circular dichroism spectroscopy of Lucina I hemoglobin. Boffi A; Wittenberg JB; Chiancone E FEBS Lett; 1997 Jul; 411(2-3):335-8. PubMed ID: 9271231 [TBL] [Abstract][Full Text] [Related]
10. High resolution proton magnetic resonance study of the two quaternary states in fully ligated hemoglobin Kansas. Ogawa S; Mayer A; Shulman RG Biochem Biophys Res Commun; 1972 Dec; 49(6):1485-91. PubMed ID: 4639808 [No Abstract] [Full Text] [Related]
11. Evidence from infrared and 13C NMR spectra for discrete rapidly interconverting conformers at the carbon monoxide binding sites of hemoglobins A and Zurich. Choc MG; Caughey WS J Biol Chem; 1981 Feb; 256(4):1831-8. PubMed ID: 7462226 [TBL] [Abstract][Full Text] [Related]
12. Proton nuclear magnetic resonance studies of hemoglobin Malmö: implications of mutations at homologous positions of the alpha and beta chains. Wiechelman KJ; Fairbanks VF; Ho C Biochemistry; 1976 Apr; 15(7):1414-20. PubMed ID: 1259945 [TBL] [Abstract][Full Text] [Related]
13. Sulfhydryl groups in hemoglobin. A new molecular probe at the alpha1 beta 1 interface studied by Fourier transform infrared spectroscopy. Bare GH; Alben JO; Bromberg PA Biochemistry; 1975 Apr; 14(8):1578-83. PubMed ID: 235959 [TBL] [Abstract][Full Text] [Related]
14. Proton nuclear magnetic resonance studies of hemoglobin M Milwaukee and their implications concerning the mechanism of cooperative oxygenation of hemoglobin. Fung LW; Minton AP; Lindstrom TR; Pisciotta AV; Ho C Biochemistry; 1977 Apr; 16(7):1452-62. PubMed ID: 849426 [TBL] [Abstract][Full Text] [Related]
15. Oxygen equilibrium and circular dichroism of hemoglobin-Rainer ( 2 2 1 45Tyr leads to Cys). Nagai M; Sugita Y; Yoneyama Y J Biol Chem; 1972 Jan; 247(1):285-90. PubMed ID: 5019947 [No Abstract] [Full Text] [Related]
16. A novel low oxygen affinity recombinant hemoglobin (alpha96val--> Trp): switching quaternary structure without changing the ligation state. Kim HW; Shen TJ; Sun DP; Ho NT; Madrid M; Ho C J Mol Biol; 1995 May; 248(4):867-82. PubMed ID: 7752247 [TBL] [Abstract][Full Text] [Related]
17. Recombinant hemoglobin(alpha 29leucine --> phenylalanine, alpha 96valine --> tryptophan, beta 108asparagine --> lysine) exhibits low oxygen affinity and high cooperativity combined with resistance to autoxidation. Jeong ST; Ho NT; Hendrich MP; Ho C Biochemistry; 1999 Oct; 38(40):13433-42. PubMed ID: 10529220 [TBL] [Abstract][Full Text] [Related]
18. Conformational aspects of the interaction of polyanions with liganded beta chains of human hemoglobin. Salahuddin A; Bucci E Biochemistry; 1976 Aug; 15(16):3399-405. PubMed ID: 952864 [TBL] [Abstract][Full Text] [Related]
19. Functional properties of human hemoglobins synthesized from recombinant mutant beta-globins. Doyle ML; Lew G; De Young A; Kwiatkowski L; Wierzba A; Noble RW; Ackers GK Biochemistry; 1992 Sep; 31(36):8629-39. PubMed ID: 1390647 [TBL] [Abstract][Full Text] [Related]
20. Structural and dynamic properties of the homodimeric hemoglobin from Scapharca inaequivalvis Thr-72-->Ile mutant: molecular dynamics simulation, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy studies. Falconi M; Desideri A; Cupane A; Leone M; Ciccotti G; Peterson ES; Friedman JM; Gambacurta A; Ascoli F Biophys J; 1998 Nov; 75(5):2489-503. PubMed ID: 9788944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]