These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 29175687)
1. Biouptake, toxicity and biotransformation of triclosan in diatom Cyclotella sp. and the influence of humic acid. Ding T; Lin K; Bao L; Yang M; Li J; Yang B; Gan J Environ Pollut; 2018 Mar; 234():231-242. PubMed ID: 29175687 [TBL] [Abstract][Full Text] [Related]
2. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. Ding T; Lin K; Yang M; Bao L; Li J; Yang B; Gan J J Hazard Mater; 2018 Feb; 344():200-209. PubMed ID: 29035714 [TBL] [Abstract][Full Text] [Related]
3. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. Ding T; Yang M; Zhang J; Yang B; Lin K; Li J; Gan J J Hazard Mater; 2017 May; 330():127-134. PubMed ID: 28214648 [TBL] [Abstract][Full Text] [Related]
4. Toxic effects and metabolic fate of carbamazepine in diatom Navicula sp. as influenced by humic acid and nitrogen species. Ding T; Lin K; Yang B; Yang M; Li J J Hazard Mater; 2019 Oct; 378():120763. PubMed ID: 31207484 [TBL] [Abstract][Full Text] [Related]
5. The impact of natural and anthropogenic Dissolved Organic Carbon (DOC), and pH on the toxicity of triclosan to the crustacean Gammarus pulex (L.). Rowett CJ; Hutchinson TH; Comber SDW Sci Total Environ; 2016 Sep; 565():222-231. PubMed ID: 27173840 [TBL] [Abstract][Full Text] [Related]
6. Corrigendum to "Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid" [Environ. Pollut. 234 (2018) 231-242]. Ding T; Lin K; Bao L; Yang M; Li J; Yang B; Gan J Environ Pollut; 2018 Nov; 242(Pt B):2099. PubMed ID: 29954617 [No Abstract] [Full Text] [Related]
7. Biological responses of alga Euglena gracilis to triclosan and galaxolide and the regulation of humic acid. Ding T; Wei L; Hou Z; Lin S; Li J Chemosphere; 2022 Nov; 307(Pt 1):135667. PubMed ID: 35835236 [TBL] [Abstract][Full Text] [Related]
8. The role of humic acid in the toxicity of arsenite to the diatom Navicula sp. Zhang J; Ni Y; Ding T; Zhang C Environ Sci Pollut Res Int; 2014 Mar; 21(6):4366-75. PubMed ID: 24323327 [TBL] [Abstract][Full Text] [Related]
9. Toxicity and Metabolic Fate of the Fungicide Carbendazim in the Typical Freshwater Diatom Navicula Species. Ding T; Li W; Li J J Agric Food Chem; 2019 Jun; 67(24):6683-6690. PubMed ID: 31140797 [TBL] [Abstract][Full Text] [Related]
10. Developmental Toxicity of Triclosan in the Presence of Dissolved Organic Carbon: Moving Beyond Standard Acute Toxicity Assays to Understand Ecotoxicological Risk. Carmosini N; Grandstrand S; King-Heiden TC Zebrafish; 2016 Oct; 13(5):424-31. PubMed ID: 27045765 [TBL] [Abstract][Full Text] [Related]
11. The combined toxicity of silver nanoparticles and typical personal care products in diatom Navicula sp. Wei L; Lin S; Yue Z; Zhang L; Ding T Mar Environ Res; 2023 Sep; 190():106120. PubMed ID: 37531678 [TBL] [Abstract][Full Text] [Related]
12. Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Delorenzo ME; Keller JM; Arthur CD; Finnegan MC; Harper HE; Winder VL; Zdankiewicz DL Environ Toxicol; 2008 Apr; 23(2):224-32. PubMed ID: 18214910 [TBL] [Abstract][Full Text] [Related]
13. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Ricart M; Guasch H; Alberch M; Barceló D; Bonnineau C; Geiszinger A; Farré Ml; Ferrer J; Ricciardi F; Romaní AM; Morin S; Proia L; Sala L; Sureda D; Sabater S Aquat Toxicol; 2010 Nov; 100(4):346-53. PubMed ID: 20855117 [TBL] [Abstract][Full Text] [Related]
14. Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron. Proia L; Morin S; Peipoch M; Romaní AM; Sabater S Sci Total Environ; 2011 Aug; 409(17):3129-37. PubMed ID: 21621820 [TBL] [Abstract][Full Text] [Related]
16. Influence of humic acid and fluvic acid on the altered toxicities of arsenite and arsenate toward two freshwater algae. Wang NX; Chen ZY; Zhou WQ; Zhang W Aquat Toxicol; 2022 Aug; 249():106218. PubMed ID: 35704967 [TBL] [Abstract][Full Text] [Related]
17. Individual and combined toxicity of silver nanoparticles and triclosan or galaxolide in the freshwater algae Euglena sp. Ding T; Wei L; Yue Z; Lin S; Li J Sci Total Environ; 2023 Aug; 887():164139. PubMed ID: 37178850 [TBL] [Abstract][Full Text] [Related]
18. Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. Wang XD; Lu YC; Xiong XH; Yuan Y; Lu LX; Liu YJ; Mao JH; Xiao WW Environ Sci Pollut Res Int; 2020 Apr; 27(10):11246-11259. PubMed ID: 31960244 [TBL] [Abstract][Full Text] [Related]
19. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Wang S; Wang X; Poon K; Wang Y; Li S; Liu H; Lin S; Cai Z Chemosphere; 2013 Sep; 92(11):1498-505. PubMed ID: 23648333 [TBL] [Abstract][Full Text] [Related]
20. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid. Sun K; Kang F; Waigi MG; Gao Y; Huang Q Environ Pollut; 2017 Jan; 220(Pt A):105-111. PubMed ID: 27640762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]