These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29175692)

  • 41. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.
    Xu XJ; Chen C; Wang AJ; Yu H; Zhou X; Guo HL; Yuan Y; Lee DJ; Zhou J; Ren NQ
    J Hazard Mater; 2014 Aug; 278():250-7. PubMed ID: 24981676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Evaluation of molybdate and nitrate on sulphate-reducing bacteria related to corrosion processes in industrial systems].
    Torrado Rincón JR; Calixto Gómez DM; Sarmiento Caraballo AE; Panqueva Alvarez JH
    Rev Argent Microbiol; 2008; 40(1):52-62. PubMed ID: 18669055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.
    Hubert C; Voordouw G
    Appl Environ Microbiol; 2007 Apr; 73(8):2644-52. PubMed ID: 17308184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes.
    Dou W; Pu Y; Han X; Song Y; Chen S; Gu T
    Bioelectrochemistry; 2020 Jun; 133():107478. PubMed ID: 32036296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers.
    Permeh S; Lau K; Duncan M
    Bioelectrochemistry; 2021 Dec; 142():107922. PubMed ID: 34392136
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria.
    Pedersen K
    J Appl Microbiol; 2010 Mar; 108(3):1094-1104. PubMed ID: 20015208
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.
    Ilhan-Sungur E; Ozuolmez D; Çotuk A; Cansever N; Muyzer G
    Anaerobe; 2017 Feb; 43():27-34. PubMed ID: 27871998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm.
    Krantz GP; Lucas K; Wunderlich EL; Hoang LT; Avci R; Siuzdak G; Fields MW
    Biofouling; 2019 Jul; 35(6):669-683. PubMed ID: 31402749
    [No Abstract]   [Full Text] [Related]  

  • 49. Biofilms and beyond: a comprehensive review of the impact of Sulphate Reducing Bacteria on steel corrosion.
    Y G A; Mulky L
    Biofouling; 2023; 39(9-10):897-915. PubMed ID: 38073525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accelerated corrosion of pipeline steel in the presence of Desulfovibrio desulfuricans biofilm due to carbon source deprivation in CO
    Eduok U; Ohaeri E; Szpunar J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110095. PubMed ID: 31546354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Corrosion risk associated with microbial souring control using nitrate or nitrite.
    Hubert C; Nemati M; Jenneman G; Voordouw G
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):272-82. PubMed ID: 15711941
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition Effect of
    Qiu L; Zhao D; Zheng S; Gong A; Liu Z; Su Y; Liu Z
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predictive models of copper runoff from external structures.
    Wallinder IO; Bertling S; Zhang X; Leygraf C
    J Environ Monit; 2004 Aug; 6(8):704-12. PubMed ID: 15292954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion.
    Nemati M; Jenneman GE; Voordouw G
    Biotechnol Prog; 2001; 17(5):852-9. PubMed ID: 11587574
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrate reduction in sulfate-reducing bacteria.
    Marietou A
    FEMS Microbiol Lett; 2016 Aug; 363(15):. PubMed ID: 27364687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Community succession in an anaerobic long-chain paraffin-degrading consortium and impact on chemical and electrical microbially influenced iron corrosion.
    Liang R; Davidova I; Hirano SI; Duncan KE; Suflita JM
    FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31281924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions.
    Dolfing J; Hubert CRJ
    Front Microbiol; 2017; 8():2575. PubMed ID: 29312252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.
    Neria-González I; Wang ET; Ramírez F; Romero JM; Hernández-Rodríguez C
    Anaerobe; 2006 Jun; 12(3):122-33. PubMed ID: 16765858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Green mitigation of microbial corrosion by copper nanoparticles doped carbon quantum dots nanohybrid.
    Kalajahi ST; Rasekh B; Yazdian F; Neshati J; Taghavi L
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40537-40551. PubMed ID: 32666463
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.