These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29175857)

  • 21. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.
    Hamzey RJ; Kirk EM; Vasudevan EV
    Exp Brain Res; 2016 Jun; 234(6):1479-90. PubMed ID: 26790424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Independent voluntary correction and savings in locomotor learning.
    Leech KA; Roemmich RT
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29903840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in mechanical work during neural adaptation to asymmetric locomotion.
    Selgrade BP; Thajchayapong M; Lee GE; Toney ME; Chang YH
    J Exp Biol; 2017 Aug; 220(Pt 16):2993-3000. PubMed ID: 28596214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking.
    Layne CS; Chelette AM; Pourmoghaddam A
    Somatosens Mot Res; 2015; 32(1):31-8. PubMed ID: 25162146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dual-learning paradigm can simultaneously train multiple characteristics of walking.
    Statton MA; Toliver A; Bastian AJ
    J Neurophysiol; 2016 May; 115(5):2692-700. PubMed ID: 26961100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force.
    Vazquez A; Statton MA; Busgang SA; Bastian AJ
    J Neurophysiol; 2015 Dec; 114(6):3255-67. PubMed ID: 26424576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incremental Visual Occlusion During Split-Belt Treadmill Walking Has No Gradient Effect on Adaptation or Retention.
    Stone AE; Hockman AC; Roper JA; Hass CJ
    Percept Mot Skills; 2021 Dec; 128(6):2490-2506. PubMed ID: 34590936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How does the motor system correct for errors in time and space during locomotor adaptation?
    Malone LA; Bastian AJ; Torres-Oviedo G
    J Neurophysiol; 2012 Jul; 108(2):672-83. PubMed ID: 22514294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Posterior Parietal Cortex Is Involved in Gait Adaptation: A Bilateral Transcranial Direct Current Stimulation Study.
    Young DR; Parikh PJ; Layne CS
    Front Hum Neurosci; 2020; 14():581026. PubMed ID: 33250730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations.
    Luu TP; He Y; Nakagome S; Nathan K; Brown S; Gorges J; Contreras-Vidal JL
    Front Hum Neurosci; 2017; 11():320. PubMed ID: 28676750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accelerating locomotor savings in learning: compressing four training days to one.
    Day KA; Leech KA; Roemmich RT; Bastian AJ
    J Neurophysiol; 2018 Jun; 119(6):2100-2113. PubMed ID: 29537915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual task effects for asymmetric stepping on a split-belt treadmill.
    McFadyen BJ; Hegeman J; Duysens J
    Gait Posture; 2009 Oct; 30(3):340-4. PubMed ID: 19595592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct motor strategies underlying split-belt adaptation in human walking and running.
    Ogawa T; Kawashima N; Obata H; Kanosue K; Nakazawa K
    PLoS One; 2015; 10(3):e0121951. PubMed ID: 25775426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation and aftereffects of split-belt walking in cerebellar lesion patients.
    Hoogkamer W; Bruijn SM; Sunaert S; Swinnen SP; Van Calenbergh F; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1693-704. PubMed ID: 26203113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unilaterally Applied Resistance to Swing Leg Shows a Different Adaptation Pattern Compared to Split-Belt Treadmill in Patients with Stroke.
    Mizrachi N; Bar-Haim S; Treger I; Melzer I
    Brain Sci; 2023 Feb; 13(2):. PubMed ID: 36831806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.
    Torres-Oviedo G; Bastian AJ
    J Neurosci; 2010 Dec; 30(50):17015-22. PubMed ID: 21159971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle contributions to center of mass acceleration adapt to asymmetric walking in healthy subjects.
    Jansen K; De Groote F; Duysens J; Jonkers I
    Gait Posture; 2013 Sep; 38(4):739-44. PubMed ID: 23597940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Split-Belt Walking Paradigm: Exploring Motor Learning and Spatiotemporal Asymmetry Poststroke.
    Helm EE; Reisman DS
    Phys Med Rehabil Clin N Am; 2015 Nov; 26(4):703-13. PubMed ID: 26522907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effects of Visual Feedback Distortion with Unilateral Leg Loading on Gait Symmetry.
    Tobar C; Martinez E; Rhouni N; Kim SJ
    Ann Biomed Eng; 2018 Feb; 46(2):324-333. PubMed ID: 29119363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.
    Houldin A; Chua R; Carpenter MG; Lam T
    J Neurophysiol; 2012 Aug; 108(3):943-52. PubMed ID: 22592310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.