BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29175903)

  • 1. 'Switch' catalysis: from monomer mixtures to sequence-controlled block copolymers.
    Stößer T; Chen TTD; Zhu Y; Williams CK
    Philos Trans A Math Phys Eng Sci; 2018 Jan; 376(2110):. PubMed ID: 29175903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Step Access to Sequence-Controlled Block Copolymers by Self-Switchable Organocatalytic Multicomponent Polymerization.
    Ji HY; Wang B; Pan L; Li YS
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16888-16892. PubMed ID: 30417592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A One-Pot Strategy to Synthesize Block Copolyesters from Monomer Mixtures Using a Hydroxy-Functionized Ionic Liquid.
    Song P; Chen Y; Li Y; Ma J; Wang L; Wang R
    Macromol Rapid Commun; 2020 Dec; 41(23):e2000436. PubMed ID: 33052626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salen-like Chromium and Aluminum Complexes as Catalysts in the Copolymerization of Epoxides with Cyclic Anhydrides for the Synthesis of Polyesters.
    Santulli F; Grimaldi I; Pappalardo D; Lamberti M; Mazzeo M
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Precision Synthesis of AB, ABA and ABC Block Copolymers via Switchable Catalysis.
    Yang Z; Hu C; Cui F; Pang X; Huang Y; Zhou Y; Chen X
    Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202117533. PubMed ID: 35038202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-Reversible Construction of Oxygen-Rich Block Copolymers from Epoxide Mixtures by Organoboron Catalysts.
    Zhang YY; Yang GW; Xie R; Zhu XF; Wu GP
    J Am Chem Soc; 2022 Nov; 144(43):19896-19909. PubMed ID: 36256447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides.
    Diment WT; Lindeboom W; Fiorentini F; Deacy AC; Williams CK
    Acc Chem Res; 2022 Aug; 55(15):1997-2010. PubMed ID: 35863044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoselective Polymerizations from Mixtures of Epoxide, Lactone, Anhydride, and Carbon Dioxide.
    Romain C; Zhu Y; Dingwall P; Paul S; Rzepa HS; Buchard A; Williams CK
    J Am Chem Soc; 2016 Mar; 138(12):4120-31. PubMed ID: 27003333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-Triggered Switchable Polymerization for the One-Pot Synthesis of CO
    Zhao Y; Wang Y; Zhou X; Xue Z; Wang X; Xie X; Poli R
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14311-14318. PubMed ID: 31282122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Well-Defined Poly(Ester Amide)-Based Homo- and Block Copolymers by One-Pot Organocatalytic Anionic Ring-Opening Copolymerization of N-Sulfonyl Aziridines and Cyclic Anhydrides.
    Xu J; Hadjichristidis N
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):6949-6954. PubMed ID: 33351198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switch Catalysis To Deliver Multi-Block Polyesters from Mixtures of Propene Oxide, Lactide, and Phthalic Anhydride.
    Stößer T; Mulryan D; Williams CK
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16893-16897. PubMed ID: 30370965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Powerful Strategy for Synthesizing Block Copolymers via Bimetallic Synergistic Catalysis.
    Fu XY; Yue TJ; Ren BH; Wang H; Ren WM; Lu XB
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401926. PubMed ID: 38415944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Polymerization Catalysis from Monomer Mixtures: Using a Commercial Cr-Salen Catalyst To Access ABA Block Polyesters.
    Stößer T; Williams CK
    Angew Chem Int Ed Engl; 2018 May; 57(21):6337-6341. PubMed ID: 29518288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures.
    Wang X; Huo Z; Xie X; Shanaiah N; Tong R
    Chem Asian J; 2023 Feb; 18(4):e202201147. PubMed ID: 36571563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst.
    Biernesser AB; Delle Chiaie KR; Curley JB; Byers JA
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5251-4. PubMed ID: 26991820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem metal-coordination copolymerization and organocatalytic ring-opening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide.
    Wu GP; Darensbourg DJ; Lu XB
    J Am Chem Soc; 2012 Oct; 134(42):17739-45. PubMed ID: 23016983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidimensional Control of Repeating Unit/Sequence/Topology for One-Step Synthesis of Block Polymers from Monomer Mixtures.
    Xia X; Gao T; Li F; Suzuki R; Isono T; Satoh T
    J Am Chem Soc; 2022 Oct; 144(39):17905-17915. PubMed ID: 36150017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Easy access to oxygenated block polymers via switchable catalysis.
    Stößer T; Sulley GS; Gregory GL; Williams CK
    Nat Commun; 2019 Jun; 10(1):2668. PubMed ID: 31209211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters.
    Zhu Y; Romain C; Williams CK
    J Am Chem Soc; 2015 Sep; 137(38):12179-82. PubMed ID: 26374097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of hybrid block copolymers via integrated ring-opening metathesis polymerization and polymerization of NCA.
    Bai Y; Lu H; Ponnusamy E; Cheng J
    Chem Commun (Camb); 2011 Oct; 47(38):10830-2. PubMed ID: 21869956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.