These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29175903)

  • 1. 'Switch' catalysis: from monomer mixtures to sequence-controlled block copolymers.
    Stößer T; Chen TTD; Zhu Y; Williams CK
    Philos Trans A Math Phys Eng Sci; 2018 Jan; 376(2110):. PubMed ID: 29175903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Step Access to Sequence-Controlled Block Copolymers by Self-Switchable Organocatalytic Multicomponent Polymerization.
    Ji HY; Wang B; Pan L; Li YS
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16888-16892. PubMed ID: 30417592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A One-Pot Strategy to Synthesize Block Copolyesters from Monomer Mixtures Using a Hydroxy-Functionized Ionic Liquid.
    Song P; Chen Y; Li Y; Ma J; Wang L; Wang R
    Macromol Rapid Commun; 2020 Dec; 41(23):e2000436. PubMed ID: 33052626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salen-like Chromium and Aluminum Complexes as Catalysts in the Copolymerization of Epoxides with Cyclic Anhydrides for the Synthesis of Polyesters.
    Santulli F; Grimaldi I; Pappalardo D; Lamberti M; Mazzeo M
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Precision Synthesis of AB, ABA and ABC Block Copolymers via Switchable Catalysis.
    Yang Z; Hu C; Cui F; Pang X; Huang Y; Zhou Y; Chen X
    Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202117533. PubMed ID: 35038202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-Reversible Construction of Oxygen-Rich Block Copolymers from Epoxide Mixtures by Organoboron Catalysts.
    Zhang YY; Yang GW; Xie R; Zhu XF; Wu GP
    J Am Chem Soc; 2022 Nov; 144(43):19896-19909. PubMed ID: 36256447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides.
    Diment WT; Lindeboom W; Fiorentini F; Deacy AC; Williams CK
    Acc Chem Res; 2022 Aug; 55(15):1997-2010. PubMed ID: 35863044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoselective Polymerizations from Mixtures of Epoxide, Lactone, Anhydride, and Carbon Dioxide.
    Romain C; Zhu Y; Dingwall P; Paul S; Rzepa HS; Buchard A; Williams CK
    J Am Chem Soc; 2016 Mar; 138(12):4120-31. PubMed ID: 27003333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-Triggered Switchable Polymerization for the One-Pot Synthesis of CO
    Zhao Y; Wang Y; Zhou X; Xue Z; Wang X; Xie X; Poli R
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14311-14318. PubMed ID: 31282122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Well-Defined Poly(Ester Amide)-Based Homo- and Block Copolymers by One-Pot Organocatalytic Anionic Ring-Opening Copolymerization of N-Sulfonyl Aziridines and Cyclic Anhydrides.
    Xu J; Hadjichristidis N
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):6949-6954. PubMed ID: 33351198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switch Catalysis To Deliver Multi-Block Polyesters from Mixtures of Propene Oxide, Lactide, and Phthalic Anhydride.
    Stößer T; Mulryan D; Williams CK
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16893-16897. PubMed ID: 30370965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Powerful Strategy for Synthesizing Block Copolymers via Bimetallic Synergistic Catalysis.
    Fu XY; Yue TJ; Ren BH; Wang H; Ren WM; Lu XB
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401926. PubMed ID: 38415944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Polymerization Catalysis from Monomer Mixtures: Using a Commercial Cr-Salen Catalyst To Access ABA Block Polyesters.
    Stößer T; Williams CK
    Angew Chem Int Ed Engl; 2018 May; 57(21):6337-6341. PubMed ID: 29518288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures.
    Wang X; Huo Z; Xie X; Shanaiah N; Tong R
    Chem Asian J; 2023 Feb; 18(4):e202201147. PubMed ID: 36571563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst.
    Biernesser AB; Delle Chiaie KR; Curley JB; Byers JA
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5251-4. PubMed ID: 26991820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Fully Controllable Monomers Sequence: Binary Organocatalyzed Polymerization from Epoxide/Aziridine/Cyclic Anhydride Monomer Mixture.
    Gao T; Xia X; Watanabe T; Ke CY; Suzuki R; Yamamoto T; Li F; Isono T; Satoh T
    J Am Chem Soc; 2024 Sep; 146(36):25067-25077. PubMed ID: 39086123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem metal-coordination copolymerization and organocatalytic ring-opening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide.
    Wu GP; Darensbourg DJ; Lu XB
    J Am Chem Soc; 2012 Oct; 134(42):17739-45. PubMed ID: 23016983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidimensional Control of Repeating Unit/Sequence/Topology for One-Step Synthesis of Block Polymers from Monomer Mixtures.
    Xia X; Gao T; Li F; Suzuki R; Isono T; Satoh T
    J Am Chem Soc; 2022 Oct; 144(39):17905-17915. PubMed ID: 36150017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Easy access to oxygenated block polymers via switchable catalysis.
    Stößer T; Sulley GS; Gregory GL; Williams CK
    Nat Commun; 2019 Jun; 10(1):2668. PubMed ID: 31209211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters.
    Zhu Y; Romain C; Williams CK
    J Am Chem Soc; 2015 Sep; 137(38):12179-82. PubMed ID: 26374097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.