These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
875 related articles for article (PubMed ID: 29176831)
1. SAGA mediates transcription from the TATA-like element independently of Taf1p/TFIID but dependent on core promoter structures in Saccharomyces cerevisiae. Watanabe K; Kokubo T PLoS One; 2017; 12(11):e0188435. PubMed ID: 29176831 [TBL] [Abstract][Full Text] [Related]
2. Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation. van Oevelen CJ; van Teeffelen HA; Timmers HT Mol Cell Biol; 2005 Jun; 25(12):4863-72. PubMed ID: 15923605 [TBL] [Abstract][Full Text] [Related]
3. The function of Spt3, a subunit of the SAGA complex, in PGK1 transcription is restored only partially when reintroduced by plasmid into taf1 spt3 double mutant yeast strains. Iwami R; Takai N; Kokubo T Genes Genet Syst; 2020 Aug; 95(3):151-163. PubMed ID: 32624556 [TBL] [Abstract][Full Text] [Related]
4. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription. Xu M; Gonzalez-Hurtado E; Martinez E Biochim Biophys Acta; 2016 Apr; 1859(4):553-63. PubMed ID: 26824723 [TBL] [Abstract][Full Text] [Related]
5. The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Saint M; Sawhney S; Sinha I; Singh RP; Dahiya R; Thakur A; Siddharthan R; Natarajan K Mol Cell Biol; 2014 May; 34(9):1547-63. PubMed ID: 24550006 [TBL] [Abstract][Full Text] [Related]
6. Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA. Zhang H; Kruk JA; Reese JC J Biol Chem; 2008 Oct; 283(41):27360-27368. PubMed ID: 18682387 [TBL] [Abstract][Full Text] [Related]
7. Molecular and genetic characterization of a Taf1p domain essential for yeast TFIID assembly. Singh MV; Bland CE; Weil PA Mol Cell Biol; 2004 Jun; 24(11):4929-42. PubMed ID: 15143185 [TBL] [Abstract][Full Text] [Related]
8. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae. Watanabe K; Yabe M; Kasahara K; Kokubo T PLoS One; 2015; 10(6):e0129357. PubMed ID: 26046838 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional activation is weakened when Taf1p N-terminal domain 1 is substituted with its Drosophila counterpart in yeast TFIID. Kasahara K; Takahata S; Kokubo T Genes Genet Syst; 2019 Apr; 94(1):51-59. PubMed ID: 30905891 [TBL] [Abstract][Full Text] [Related]
10. TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter. Wright KJ; Marr MT; Tjian R Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12347-52. PubMed ID: 16895980 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters. de Jonge WJ; O'Duibhir E; Lijnzaad P; van Leenen D; Groot Koerkamp MJ; Kemmeren P; Holstege FC EMBO J; 2017 Feb; 36(3):274-290. PubMed ID: 27979920 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic Differences in Transcription Initiation at TATA-Less and TATA-Containing Promoters. Donczew R; Hahn S Mol Cell Biol; 2018 Jan; 38(1):. PubMed ID: 29038161 [TBL] [Abstract][Full Text] [Related]
13. Broad compatibility between yeast UAS elements and core promoters and identification of promoter elements that determine cofactor specificity. Schofield JA; Hahn S Cell Rep; 2023 Apr; 42(4):112387. PubMed ID: 37058407 [TBL] [Abstract][Full Text] [Related]
14. Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences. Chen J; Ding M; Pederson DS Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11909-13. PubMed ID: 7991556 [TBL] [Abstract][Full Text] [Related]
15. Autonomous function of the amino-terminal inhibitory domain of TAF1 in transcriptional regulation. Takahata S; Kasahara K; Kawaichi M; Kokubo T Mol Cell Biol; 2004 Apr; 24(8):3089-99. PubMed ID: 15060133 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of the activation domain of Ifh1, an activator of model TATA-less genes. Zhong P; Melcher K Biochem Biophys Res Commun; 2010 Jan; 392(1):77-82. PubMed ID: 20059977 [TBL] [Abstract][Full Text] [Related]
18. TFIID dependency of steady-state mRNA transcription altered epigenetically by simultaneous functional loss of Taf1 and Spt3 is Hsp104-dependent. Iwami R; Takai N; Matsutani M; Shiwa Y; Kokubo H; Kasahara K; Kokubo T PLoS One; 2023; 18(2):e0281233. PubMed ID: 36757926 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis of TAF6 revealed the essential requirement of the histone-fold domain and the HEAT repeat domain for transcriptional activation. Dahiya R; Natarajan K FEBS J; 2018 Apr; 285(8):1491-1510. PubMed ID: 29485702 [TBL] [Abstract][Full Text] [Related]
20. SAGA Is a General Cofactor for RNA Polymerase II Transcription. Baptista T; Grünberg S; Minoungou N; Koster MJE; Timmers HTM; Hahn S; Devys D; Tora L Mol Cell; 2017 Oct; 68(1):130-143.e5. PubMed ID: 28918903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]